000891423 001__ 891423
000891423 005__ 20240610120749.0
000891423 0247_ $$2doi$$a10.1140/epja/s10050-021-00413-y
000891423 0247_ $$2ISSN$$a1434-6001
000891423 0247_ $$2ISSN$$a1434-601X
000891423 0247_ $$2Handle$$a2128/27654
000891423 0247_ $$2altmetric$$aaltmetric:85678605
000891423 0247_ $$2WOS$$aWOS:000631879900003
000891423 037__ $$aFZJ-2021-01508
000891423 082__ $$a530
000891423 1001_ $$0P:(DE-HGF)0$$aMatuschek, Inka$$b0$$eCorresponding author
000891423 245__ $$aOn the nature of near-threshold bound and virtual states
000891423 260__ $$aHeidelberg$$bSpringer$$c2021
000891423 3367_ $$2DRIVER$$aarticle
000891423 3367_ $$2DataCite$$aOutput Types/Journal article
000891423 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618926404_19083
000891423 3367_ $$2BibTeX$$aARTICLE
000891423 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891423 3367_ $$00$$2EndNote$$aJournal Article
000891423 520__ $$aPhysical states are characterised uniquely by their pole positions and the corresponding residues. Accordingly, in those parameters also the nature of the states should be encoded. For bound states (poles on the real s-axis below the lowest threshold on the physical sheet) there is an established criterion formulated originally by Weinberg in the 1960s, which allows one to estimate the amount of compact and molecular components in a given state. We demonstrate in this paper that this criterion can be straightforwardly extended to shallow virtual states (poles on the real s-axis below the lowest threshold on the unphysical sheet) which should be classified as molecular. We argue that predominantly non-molecular or compact states exist either as bound states or as resonances (poles on the unphysical sheet off the real energy axis) but not as virtual states. We also discuss the limitations of the mentioned classification scheme.
000891423 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational-  Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891423 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000891423 588__ $$aDataset connected to CrossRef
000891423 7001_ $$0P:(DE-HGF)0$$aBaru, Vadim$$b1
000891423 7001_ $$00000-0002-2919-2064$$aGuo, Feng-Kun$$b2
000891423 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b3$$ufzj
000891423 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-021-00413-y$$gVol. 57, no. 3, p. 101$$n3$$p101$$tThe European physical journal / A$$v57$$x1434-601X$$y2021
000891423 8564_ $$uhttps://juser.fz-juelich.de/record/891423/files/Matuschek2021_Article_OnTheNatureOfNear-thresholdBou.pdf$$yOpenAccess
000891423 8564_ $$uhttps://juser.fz-juelich.de/record/891423/files/virtualstates_revised_v2.pdf$$yOpenAccess
000891423 8767_ $$d2021-03-22$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000891423 909CO $$ooai:juser.fz-juelich.de:891423$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access
000891423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000891423 9101_ $$0I:(DE-HGF)0$$60000-0002-2919-2064$$aExternal Institute$$b2$$kExtern
000891423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b3$$kFZJ
000891423 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891423 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891423 9141_ $$y2021
000891423 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891423 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891423 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2019$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000891423 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891423 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891423 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000891423 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891423 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000891423 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000891423 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000891423 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000891423 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000891423 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000891423 9801_ $$aFullTexts
000891423 980__ $$ajournal
000891423 980__ $$aVDB
000891423 980__ $$aUNRESTRICTED
000891423 980__ $$aI:(DE-Juel1)IAS-4-20090406
000891423 980__ $$aI:(DE-Juel1)IKP-3-20111104
000891423 980__ $$aAPC
000891423 981__ $$aI:(DE-Juel1)IAS-4-20090406