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Abstract Physical states are characterised uniquely by
their pole positions and the corresponding residues. Accord-
ingly, in those parameters also the nature of the states should
be encoded. For bound states (poles on the real s-axis below
the lowest threshold on the physical sheet) there is an estab-
lished criterion formulated originally by Weinberg in the
1960s, which allows one to estimate the amount of com-
pact and molecular components in a given state. We demon-
strate in this paper that this criterion can be straightforwardly
extended to shallow virtual states (poles on the real s-axis
below the lowest threshold on the unphysical sheet) which
should be classified as molecular. We argue that predomi-
nantly non-molecular or compact states exist either as bound
states or as resonances (poles on the unphysical sheet off the
real energy axis) but not as virtual states. We also discuss the
limitations of the mentioned classification scheme.

1 Introduction

The observations of the D∗
s0(2317) [1], which is slightly

below the DK threshold, and the charmonium-like meson
X (3872) in 2003 [2], which lies remarkably close to the
D0 D̄∗0 threshold, sparked a renewed interest in heavy meson
spectroscopy, since their properties are in conflict with the
predictions of the quark model. Since then a large num-
ber of exotic hadrons which cannot be accommodated by
conventional quark models, were discovered and are still
being found in such facilities as BaBar, Belle, BESIII and
LHCb. Those in the heavy quarkonium mass region are
called XY Z states. Various models were developed for
describing these exotic states. The proposals include hadro-
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quarkonia, hybrids, tetraquarks, molecular states and kine-
matical effects, for recent reviews see, for example, Refs. [3–
10]. All these states have in common, that their masses are
located above the first heavy-quark open-flavor threshold,
D̄D or B̄ B, respectively. Moreover, many masses lie close
to some open-flavor threshold, which makes these states nat-
ural candidates for hadronic molecules.

Unrevealing the nature of the XY Z states is of high inter-
est for it will shed light on how quantum chromodynamics
(QCD) forms hadrons. To form the basis for this quest, one
needs to provide theoretically sound definitions of the differ-
ent structures. In the 1960’s Weinberg found a way to dis-
criminate between composite (or molecular) and elementary
(or compact) near-threshold bound states in the weak-binding
limit [11–13]. In particular, he showed that the composite-
ness is given by 1 − Z , where Z is the field renormalization
constant of a state. Moreover, he derived that the residue at
the pole in the scattering amplitude of two hadrons, which
can couple to this state, directly measures Z and obtained
relations between Z , the scattering length a and the effective
range r . Then, he applied this model-independent scheme to
the deuteron and demonstrated that the deuteron indeed is
not an elementary particle.

Before we proceed, it is useful to clarify the nomencla-
ture and the physical meaning of certain near threshold pole
locations. Physical asymptotic states, in the context of scat-
tering theory often referred to as bound states, are stable.
They can be used as beams or targets in experimental setups
and can also be measured as final states in experiments.
In the scattering amplitude, such states show up as poles
on the physical Riemann sheet below the lowest threshold
in the complex energy or s-plane. Into this class falls for
instance the deuteron. Very similar features have very nar-
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row (which means long-lived) unstable states, if their cor-
responding pole sits on the first sheet with respect to the
nearby threshold and the inelastic threshold is remote [14].
Here, one often speaks of quasi-bound states. To be distin-
guished from (quasi-)bound states are poles on the unphysi-
cal sheet(s). There are on the one hand virtual states (located
on the real axis of the unphysical sheet of the energy plane
below threshold) and on the other hand resonances (located in
the complex plane of the unphysical sheet with a nonvanish-
ing imaginary part). Resonance poles need to appear in pairs
thanks to the Schwarz reflection principle. Clearly, neither
of these states appear as asymptotic states and the associated
wave functions are not normalisable, but they can have a sig-
nificant impact on observables. Especially because most of
the states of interest are indeed resonances, quasi-bound or
virtual states and the distinction between them without a
careful analysis can be subtle (for a detailed discussion see,
e.g., Refs. [14,15]), it appears necessary to derive model-
independent tools applicable to access the nature of a state
for all these scenarios.

The mentioned Weinberg-compositeness criterion relies
on the normalization of the wave function. Accordingly, it
is formally applicable only to bound states. In recent years,
however, much research has been devoted to a possible gener-
alization of this approach, e.g. the generalization to coupled
channels was done in Ref. [14]. Of special interest is a consis-
tent definition of the compositeness for states corresponding
to poles on the unphysical sheet, i.e., resonances and virtual
states. Related studies can be found in Refs. [15–31]. Most
of these works, however, focus on resonances and cannot be
applied to virtual states.

It is a general understanding that virtual states are essen-
tially molecular, although to the best of our knowledge so
far no proper proof of this assertion was provided. In this
paper, we provide this missing proof. For this, we use the
close connection between bound and virtual states in two-
body S-wave scattering to develop a reliable criterion to esti-
mate the compositeness of near-threshold virtual states. The
paper is organized as follows. In Sect. 2, we revisit the Wein-
berg criterion and discuss possible extensions, and in Sect. 3
we employ the relation between the pole positions and the
compositeness to demonstrate that virtual states can be con-
sidered mostly molecular. Then in Sect. 4, we discuss appli-
cations. The first state we study is the shallow virtual state
that appears in the 1S0-channel in nucleon–nucleon scatter-
ing. We also analyze lattice results for NN scattering at the
unphysical pion mass mπ = 450 MeV. Then, we proceed to
the DK system focusing in particular on the D∗

s0(2317) pole
trajectory when some fundamental constant such as the quark
mass is varied. Employing the results of Ref. [32], we discuss
the transition of a bound state in this DK channel to a virtual
state when the strange-quark mass (or simply the kaon mass)
is varied. Finally, we comment on the exotic Zb(10610) and

Zb(10650) states which allows us to also discuss the limita-
tions of our approach. We close with a short summary and
outlook.

2 Weinberg criterion and extensions

2.1 Field renormalization factor for bound states

We start with the derivation of the Weinberg compositeness
criterion following Ref. [14], see also Ref. [6] for a review.
Since we focus on near-threshold states, a nonrelativistic for-
malism is justified. Moreover, to simplify the notation, the
argument is presented for scalar particles only. Then, a phys-
ical bound state, realized as a pole on the first (physical)
sheet, is assumed to consist of a bare compact state |ψ0〉 and
a two-hadron channel |h1h2〉p, characterized by the relative
momentum p of the two hadrons:

|�〉 =
(

λ |ψ0〉
χ(p) |h1h2〉p

)
. (1)

The probability of finding the bare state in the physical state
is given by

|〈ψ0|�〉|2 = λ2. (2)

This is the quantity we are interested in, since (1 −λ2) gives
the compositeness of the physical state. The interaction is
governed by the Hamiltonian

Ĥ =
(
Ĥc V̂
V̂ Ĥ0

hh

)
. (3)

We assume that a proper field redefinition has been per-
formed, such that the h1h2 interaction was eliminated from
the Lagrangian. Therefore, Ĥ0

hh contains only the two-hadron
kinetic term p2/(2μ), where μ = m1m2/(m1 +m2) denotes
the reduced mass of h1 and h2. Such kind of field transfor-
mation is always possible at least if there is only a single
pole on the first sheet [11], see also Ref. [33], in which the
derivation of the compositeness criterion was done including
the interaction in the hadronic channel explicitly. Employing
the Schrödinger equation, Ĥ|�〉 = E |�〉, one finds

Eχ(p) = p〈h1h2|Ĥ|�〉
= p〈h1h2|V̂λ|ψ0〉

+
∫

d3 p′

(2π)3 p〈h1h2|Ĥ0
hhχ(p′)|h1h2〉p′

= λ f (p2) + p2

2μ
χ(p), (4)
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where we introduced the transition form factor f (p2) =
〈ψ0|V̂ |h1h2〉p. This yields

χ(p) = λ
f (p2)

E − p2/(2μ)
. (5)

Employing this relation the normalization condition of the
physical state can be expressed as

1 = 〈�|�〉 = λ2
(

1 +
∫

d3 p

(2π)3

f 2(p2)

(EB + p2/(2μ))2

)
, (6)

where the binding energy is defined via EB = m1 +m2 −M ,
with M for the mass of the state under investigation. We can
compare this to the definition of the field renormalization Z
in the nonrelativistic theory

G(E) = 1

E − E0 − �(E)
= Z

E + EB
+ O

(
(E + EB)2

)
,

(7)

where

− EB=E0 + �(−EB), Z= 1

1 − ∂�/∂E |E=−EB

. (8)

Since

�(E) =
∫

d3 p

(2π)3

f 2(p2)

E − p2/(2μ) + i0
, (9)

it follows that

Z =
(

1 +
∫

d3 p

(2π)3

f 2(p2)

(EB + p2/(2μ))2

)−1

. (10)

Comparing Eq. (10) to Eq. (6) yields

Z = λ2 . (11)

The compositeness is therefore given by 1 − Z .
It is well known from textbooks on quantum field theory

that the renormalization field factor is a scheme and even
regularization dependent quantity. Indeed, those pieces of Z
that are analytic in E are scheme dependent and need to be
fixed by some renormalization condition. However, here we
are mostly interested in the weak-binding limit defined via
γ � β, where γ = √

2μEB denotes the binding momentum
and β the closest non-analyticity of the system not related to
the threshold under investigation. Often 1/β can be identified
with the range of forces or with the leading left-hand cut of
the potential but, as will be discussed below, it can also refer
to the distance to the next higher threshold. In this limit for
S-waves, a non-analytic model-independent piece dominates

Z . To see this, one may observe that β sets the scale for the
momentum variation of f (p2) such that we may write

∫
f 2(p2)d3 p

(EB + p2/(2μ))2 = 16μ2π

∫ ∞

0

f 2(p2)p2dp

(p + iγ )2(p − iγ )2

= 4μ2π2 f 2(−γ 2)

γ

[
1 + O

(
γ

β

)]
.

The terms that result from the singularities of the transition
form factor are contained in the last term in the last line, which
should be small in the weak binding limit. The scheme and
scale dependent part is contained in the suppressed O(γ /β)

terms. Using f (−γ 2) = g2
0 for the unrenormalized coupling

constant, we get from Eq. (10)

1

Z
− 1 = μ2g2

0

2πγ
+ O

(
γ

β

)
. (12)

Hence, in the weak binding limit (γ � β), the quantity Z ,
which is a measure of the compositeness, is dominated by a
calculable, non-analytic piece. The effective coupling

g2 = Zg2
0 = 2πγ

μ2 (1 − Z) (13)

is the residue of the scattering amplitude and is therefore a
measurable quantity.

Note that this analysis is model independent only if a state
couples with a two-body continuum channel in an S-wave.
Indeed, since the centrifugal barrier p2L needs to be included
in the integral in Eq. (10), for higher partial waves, already the
leading piece of the integral depends on the model-dependent
parameter β. In addition, it is imperative that the constituents
of the bound state are narrow, since otherwise the bound state
would be broad as well [34]. The narrowness is characterized
by � with � � β, which is understandable as otherwise the
constituents would not have enough time to interact to form
a bound state [35].

With the notation introduced above, the scattering matrix
with a pole on the physical sheet at E = −EB reads

T (E) = g2
0

E + EB + g2
0μ

2π
(ik + γ )

+ non-pole terms, (14)

where we used that Im(�(E)) = −iμkg2
0/(2π), with E =

k2/(2μ). To relate g0 and Z to observables, we match Eq. (14)
to the effective range expansion (ERE) defined as

T (E) = −2π

μ

1

1/a + (r/2)k2 − ik
, (15)
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Fig. 1 Naming convention for the poles in the k-plane. The thick red
line for positive real valued k marks the physical momenta in the scat-
tering regime

wherea (r ) denotes the scattering length (the effective range).
This yields

a = −2
1 − Z

2 − Z

1

γ
+ O(1/β),

r = − Z

1 − Z

1

γ
+ O(1/β) . (16)

To see how these equations work, consider the two extreme
cases of a pure molecule and a purely compact state. The
former implies Z = 0 and thus the absolute value of the scat-
tering length gets maximal, a = −1/γ , while r = O(1/β)

is of natural size and typically positive, although below we
will discuss an example of a predominantly molecular state
with a negative effective range. On the other hand, in case
of a purely compact bound state the scattering length takes
a natural value, a = −O(1/β), and the effective range gets
unnaturally large and negative. Solving Eq. (16) for Z , in
the zero-range approximation (neglecting theO(1/β) terms),
one finds

1 − Z =
√

a

a + 2r
=: X , (17)

where we introduced the compositeness X . It follows directly
from Eq. (16) that Eq. (17) holds only when both a and r are
negative. While the former condition is correct as soon as the
relevant pole is on the physical sheet, the latter signals that
in the derivation range corrections were neglected.

2.2 Possible extensions of compositeness beyond bound
states

Physical states are associated with poles of the T -matrix.
From Eq. (15) it follows that there are two poles located at

k = i

r

(
1 ±

√
1 + 2r

a
.

)
(18)

The leading pole is the pole closest to the physical axis. States
with their leading pole on the positive imaginary momentum

Fig. 2 Types of poles in the r–a plane. The dotted line, located at
r = −a, refers to those poles that have a vanishing real part in the E
plane and accordingly are located right at threshold

axis are called bound states, since by definition the sheet
with momenta that have positive imaginary parts refers to
the physical sheet. On the other hand, states on the nega-
tive imaginary momentum axis are called virtual states and
all other physically allowed states resonances (see Fig. 1).
Analyticity demands that resonance poles always appear in
pairs, as shown in this figure. All of these possibilities can
be related to different values of the effective range param-
eters, as indicated in Fig. 2. Note that resonance poles are
located above the corresponding threshold when studied in
the (energy) k2 plane (or the Mandelstam s plane) only if the
following conditions are fulfilled simultaneously: |a| < |r |,
r < 0 and a > 0. The line a = −r is also shown as the dot-
ted line in Fig. 2. The region above the (r = −a/2)-line for
a < 0 in Fig. 2 is not carrying any name and is left white, for
it refers to poles in the complex plane of the physical sheet.
Such poles are unphysical since the resulting states would be
at odds with causality. Moreover, positive effective ranges
that vastly exceed the range of forces also lead to a violation
of causality — this fact, represented in the figure as the red
hatched area, is known as Wigner bound [36] (for a modern
discussion of the subject see Ref. [37]), see Appendix A.

It is not trivial to extend the notion of compositeness to
states other than bound states, since wave functions derived
from poles on the unphysical sheet are not normalizable and
the probabilistic interpretation is lost. Nevertheless, relying
formally on the definition of the field renormalization Z in
the nonrelativistic theory (Eqs. (7)–(10)), relations between
a, r, g2 and Z can be derived also for a virtual state with a
pole at k = −iγ = −i

√
2μEB and are similar to those of a

bound state (given above in Eqs. (13) and (16)): one simply
replaces γ in these equations by −γ to get the relations for
the virtual state with Z given in Eqs. (8) and (17).
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Fig. 3 a Z̄H as suggested in Ref. [31], with the regions where the
expression diverges left white; b Z̄ A as in Eq. (20). In the lower left
quadrant (r < 0, a < 0) the two prescriptions agree by construction
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Fig. 4 Z̄H (green dashed line) and Z̄ A (red solid line) versus 2r/a.
The horizontal thin (black) line corresponds to Z = 0. When 2r/a > 0
and r is negative both prescriptions agree with each other and with
the Weinberg’s Z from Eq. (17). The compactness Z̄H has a pole at
2r/a = −1

Motivated by the fact that the absolute value of X is con-
fined within the interval 0 < |X | < 1 also for resonances
above threshold, a possible prescription for compositeness
was provided in Ref. [31]. Namely, it was suggested to define
compositeness via a continuation of Eq. (17) as

X̄ H = 1 − Z̄H =
√∣∣∣∣ a

a + 2r

∣∣∣∣ , (19)

where the subindex H is put to indicate that this continuation
is from Ref. [31] by T. Hyodo, see also Ref. [26] for a related
study. Since no range corrections are included, the range of
applicability of Eq. (19) is supposed to be restricted by r <

0. The behavior of this continuation in the (a − r)-plane
is illustrated in Fig. 3(a). By construction, for bound states
(a < 0, r < 0) the quantity X̄ H agrees with the Weinberg’s
X from Eq. (17). However, as it is seen from Fig. 3 (a), when
|r | → a for r < 0 and a > 0, X̄ H → 1 and one would
then conclude that the state in this case is purely molecular,
even though we are far from the typical molecular regime
corresponding to |a| 
 |r |. Moreover, in the range a/2 ≤
|r | < a, X̄ H gets larger than one and even diverges when |r |
approaches a/2. Actually, this peculiar behaviour of X̄ H is a
direct consequence of the pole in Eq. (19) when r = −a/2,
see also Figs. 3a and 4.

As the choice of continuation of the X is not unique, as
an alternative to Eq. (19), we introduce the quantity

X̄ A = 1 − Z̄ A =
√

1

1 + |2r/a| , (20)

where Z̄ A is illustrated in figures 3b and 4. While by con-
struction both formulations agree in the regime where the
Weinberg formula, Eq. (17), is applicable, they differ signifi-
cantly elsewhere. Moreover, Eq. (20) is applicable in the full
(a − r)-plane, while Eq. (19) is not. Indeed, the quantity X̄ A

is always normalized as X̄ A ∈ [0, 1] and provides a smooth
transition from the regime of molecules to the regime of com-
pact states avoiding artificial poles. Therefore, this quantity
can be used to estimate the compositeness for bound states,
resonances and virtual states, see next section for a detailed
discussion. While the original X from Eq. (17) was derived
in the zero-range approximation only, that is for r < 0 (see
1), X̄ A provides also reasonable results for r > 0. Consider,
for example, the case of the deuteron which is known as the
archetypical example of molecular states [13]. Indeed, the
experimental values for the scattering length and the effec-
tive range (a = −5.41 fm and r = +1.75 fm) are in agree-
ment with the condition |a| 
 |r | corresponding to predomi-
nantly composite objects. Meanwhile, an attempt to use these
parameters to estimate X naively, that is from Eq. (17), fails
badly yielding Z ≈ −0.7 and X ≈ 1.7. This seems to be in
contradiction with the expectations that the range corrections
to X should scale as O(γ /β), which translates to about 30%
for the deuteron. However, while the range corrections in the
deuteron are indeed of natural size, they change the sign of
the effective range and therefore Eq. (17) is not applicable
anymore. On the other hand, using Eq. (20) gives X̄ A = 0.8,
which includes the natural effect from the range corrections
and is completely consistent with our expectations for this
molecular state. Note, however, that X̄ A should still be under-
stood as the leading-order approximation to the composite-
ness, since range corrections cannot be included in X̄ A in a
model-independent way.
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In what follows, we discuss pole trajectories focusing on
the limiting cases of the transitions from bound states to vir-
tual states and to resonances. We will argue, that as long as
range corrections can be neglected, shallow virtual states are
indeed dominated by their two-hadron component, while nar-
row near-threshold resonances are of predominantly compact
nature.

3 Pole trajectories and compositeness of states

In order to study the origin of a state, it is instructive to follow
the trajectories of its poles as they move from the physical
sheet to the unphysical sheet when some QCD parameter
(such as a quark mass) is varied. Before studying this on a
concrete example, we discuss some general features of the
trajectories under the assumption that the largest impact on
the poles is provided by a change in the scattering length,
while the effective range remains constant. This kind of study
is motivated by the trajectories of the f0(500) reported in
Ref. [38]. Also in NN scattering, the analysis of lattice data
from Refs. [39,40] shows that the effective ranges in the
1S0 and 3S1 channels vary with the pion mass much more
smoothly than the corresponding scattering lengths.

Let us first look at a system with a shallow bound state
controlled by the condition |r | � |a|, where a is large and
negative. The corresponding state is predominantly molecu-
lar. Then, to leading order (LO) in |r/a| � 1, the scattering
amplitude in the effective range approximation possesses two
well separated poles

k1 = − i

a

[
1 + O

( r
a

)]
, k2 = 2i

r

[
1 + O

( r
a

)]
. (21)

The bound state pole k1 resides close to the threshold and,
therefore, leaves a remarkable imprint in the observables.
Being driven by the scattering length, this pole is stable
against the inclusion of the range corrections ∼ O(1/β) in
the hadronic potential, which can be systematically included
within some low-energy expansion. On the contrary, the pole
k2 strongly depends on the model used – its actual location
will change significantly if the range corrections as well as
higher-order terms in the effective range expansion are taken
into account, since r ∼ 1/β. However, as long as |r | � |a|,
the pole k2 is always remote and therefore has at most a very
small effect on observables.

Employing Eq. (16), neglecting terms ofO(1/β), the rele-
vant pole k1 can be expressed in terms of the renormalization
factor Z and the effective range as

k1 ≈ − i Z

r
, (22)

where in the regime studied here, |r | � |a|, Z � 1. More-
over, r is negative since range corrections are neglected. It
follows from Eqs. (21) and (22) that, for a given value of

r , the effect on the pole from changing the scattering length
when some QCD parameter is varied is equivalent to that
from changing Z . In case of S-wave scattering there is a very
close connection between shallow bound states and virtual
states: as long as some minor change in the parameters makes
an attractive potential weaker, the corresponding bound-state
pole moves along the imaginary k axis towards the threshold
to turn eventually into a near-threshold pole on the negative
imaginary k axis, that is to a virtual state. As follows from the
pole k1 in Eq. (21), this transition corresponds to the change in
the scattering length from −∞ for a very shallow bound state
to +∞ for a very shallow virtual state. At the same time, we
get from Eq. (22) that switching from a bound state to a vir-
tual state calls for Z to change its sign. The logic in this para-
graph can actually be reversed. Let us assume that in some
calculation a pole moves smoothly from a bound to a virtual
state leaving r nearly constant when some QCD parameter
is varied. Since this transition requires a sign change in k1

and since Z is expected to change smoothly, it follows from
Eq. (22) that Z needs to change from small and positive to
small and negative. Since Z ≈ 0 points at a molecular state,
the whole pole trajectory would correspond to a molecu-
lar or two-hadron scenario. Therefore, near-threshold virtual
states necessarily have a dominating two-hadron component
and should be labeled as molecular as well. The compactness
Z̄ A (or compositeness X̄ A) from Eq. (20) is fully consistent
with this conclusion since it treats virtual states on an equal
footing with bound states, that is Z̄ A ≈ 0 for |r | � |a|.

The other extreme case, where |a| � |r | holds, corre-
sponds to compact states with Z close to 1. To have the poles
near the origin in this case, the small and negative scattering
length must compensate for the large and negative effective
range such that ar ≈ 1/(μEB). Then, one gets two poles
on the imaginary axis nearly equidistant from the origin that
employing the effective range expansion can be expressed as

k1,2 = ±i

√
2

a r
+ i

r
+ O

(√
a

r3

)
. (23)

Alternatively, one can again express the poles in terms of the
effective range and Z to get

k1,2 ≈ ± i

r(1 − Z)
+ i

r
, (24)

where, as before, the correction terms were dropped. As fol-
lows from Eq. (23), when the scattering length changes sign
the system goes directly from the bound state scenario to a
resonance with poles located at (note: we then have a > 0
and r < 0)

kres.
1,2 � ±

√
− 2

a r
+ i

r
(25)

123
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without going through a virtual state. Formally, this transition
would require Z to change from a real value close to 1 to a
complex quantity Z = 1 ± i

√|a/2r |, while Z̄ A just gives
Z̄ A = 1 − √|a/2r | ≈ 1 for |a| � |r |. As long as the poles
discussed above are located in the vicinity of the threshold,
the range corrections ∼ O(1/β) are not expected to change
the conclusions qualitatively.

We therefore found that, as long as range corrections can
be neglected, very narrow resonances very near, but above,
an S-wave threshold will generate poles as in Eq. (23) and
thus they should be predominantly of compact nature. In par-
ticular, a compact resonance close to a continuum threshold
should couple to this threshold only very weakly. Denoting
the poles, which are defined in the complex E plane relative
to the threshold, as E res., from Eq. (25), one has

∣∣∣∣Re E res.

Im E res.

∣∣∣∣ �
√∣∣∣ r

2a

∣∣∣ 
 1. (26)

Thus, resonances satisfying Eq (26) qualify as very narrow
here.

Before closing this section we would like to confront the
quantities Z̄H and Z̄ A introduced in Eqs. (19) and (20),
respectively, with the observations reported above. As was
already discussed in Sect. 2.2, Z̄H is close to zero in the
regime where |r | ≈ a, with r < 0 and a > 0, see Fig 4.
On the contrary, from the above considerations it follows
that, as long as range corrections are neglected, |r | ≈ a is
some interim regime, where both compact and two-hadron
components are present in the state – in line with Z̄ A ≈ 0.4.

To summarize, the condition, for a near-threshold state to
contain a dominant two-hadron component, can be derived
from the effective range parameter directly: if |r | ∼ 1/β, the
state is predominantly molecular. If, on the other hand, a state
is predominantly compact, then r is negative and |r | 
 1/β.
These conditions hold for near-threshold bound states, virtual
states as well as resonances and are encoded in the quantity
Z̄ A introduced in Eq. (20). The information on the effec-
tive range can be inferred from studying the pole trajectories
using lattice QCD with the help of the appropriate effective
field theories.

4 Applications

4.1 NNscattering

It was the deuteron for which Weinberg successfully applied
his criterion for compositeness of near-threshold S-wave
bound states [13]. The deuteron is an isoscalar shallow
bound state in the coupled 3S1-3D1-channel. As expected,
the deuteron turned out to be primarily molecular in nature,
see Sect. 2.2 for further discussion of this topic. There is also
a pole in the isovector 1S0-channel, but this pole is a virtual

state. In this channel, the effective range parameters read [41]

a = 23.7 fm = 0.121 MeV−1,

r = 2.7 fm = 0.0136 MeV−1 . (27)

They can be compared to the inverse of the typical momentum
scale of the binding interaction,

1/β ∼ 1/mπ ≈ 0.007 MeV−1 . (28)

Since the effective range is positive and of the order of the
range of forces, it is clearly a range correction. A possible
short-range compact component that would provide a nega-
tive contribution to the effective range, is apparently smaller
than the range corrections. Thus like the deuteron this vir-
tual state is primarily composite. In line with this we find
X̄ A = 0.9.

In Ref. [40], an effective field theory approach based on
low-energy theorems in NN scattering was employed to
analyze lattice results at an unphysical pion mass mπ =
450 MeV obtained by the NPLQCD collaboration [42]. At
this pion mass both channels have bound states. In particular,
using the binding energies of the deuteron and the dineutron
system from Ref. [42], the effective range parameters were
extracted at next-to-leading order (NLO) in this EFT, namely,

a(3S1)
NLO = −2.234(+0.144

−0.156)

(
+0.072
−0.052

)
fm,

r (3S1)
NLO = 1.07

(
+0.03
−0.03

)(
+0.08
−0.05

)
fm, (29)

a(1S0)
NLO = −2.501

(
+0.174
−0.481

)(
+0.304
−0.123

)
fm,

r (1S0)
NLO = 1.25

(
+0.05
−0.12

)(
+0.32
−0.12

)
fm, (30)

where the uncertainties in the first and second brackets are
statistical and systematic, respectively. Using these parame-
ters one finds that X̄ A ≈ 0.7 both in the 3S1 and 1S0 chan-
nels, which is also consistent with a predominantly molecular
scenario. Since the effective range is small (r ∼ 1/mπ ) and
positive, also in this case, the deviation of X̄ A from unity is
expected to be mostly from the range corrections.

4.2 DK system

In Ref. [38], the pole trajectories for the f0(500), also known
as σ , were studied as a function of the light quark (up and
down) mass (for more on this see Refs. [43–45]). There it was
shown that for a sufficiently large quark mass the σ meson
becomes a bound state. The corresponding pole trajectories
are fully in line with what was discussed above for |a| 

|r | ∼ β. Accordingly, at least for quark masses where the
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Fig. 5 Pole trajectories of the D∗
s0(2317) when the kaon mass is varied between 200 MeV and 500 MeV, as indicated by color: a Pole trajectories

in the energy plane relative to the K D threshold; b Trajectories in the momentum plane. Both the leading and more distant poles are shown in the
plot

pole is close to the threshold, the f0(500) should be viewed
as a hadronic molecule.

An additional interesting case is the DK system and its
connection to the D∗

s0(2317) pole. Since its discovery in 2003
by the BaBar Collaboration [1], the positive-parity scalar
charm-strange meson D∗

s0(2317) with a very narrow width
has been studied extensively. The mass of D∗

s0(2317) lies
only 45 MeV below the DK threshold, which makes it a
natural candidate for a hadronic molecule. That this inter-
pretation also fits to recent B-decay data is discussed in
Ref. [46]. Additional arguments in favour of a molecular
nature of the D∗

s0(2317) as well as earlier references can be
found in Refs. [6,47].

To investigate the pole trajectories of the mentioned state,
we utilize the analysis done in Ref. [32] since it provides
us with direct access to the quark mass dependencies of the
system. In this work, the Lüscher finite volume technique
is used to calculate the Goldstone-boson–D-meson scatter-
ing lengths in those channels that do not have disconnected
diagrams. The resulting pion mass dependence of the scat-
tering lengths is used to fix all low energy constants (LECs)
that appear at NLO of the chiral expansion. The amplitude
completely determined in this way was then used to calcu-
late other channels, in particular the isospin-0, strangeness-1
channel in which the D∗

s0(2317) resides. Here we investi-
gate the dependence of the pole positions on the kaon mass.
For larger-than-physical kaon masses this was discussed in
Ref. [48]. Here we want to continue the kaon mass to smaller
than physical values to observe the transition of the bound
state to a virtual state.

To find the kaon mass dependence of the involved states,
let us consider the effective chiral Lagrangian for D-mesons
and Goldstone bosons at NLO taking into account only the
strong interaction. The LO Lagrangian is just the chirally

covariant kinetic energy term of the heavy mesons

L(1) = DμD†DμD − m2
DD

†D , (31)

with D = (D0, D+, D+
s ) denoting the D-mesons, mD the

D-meson mass in the chiral limit, and the covariant derivative
being

Dμ = ∂μ + �μ ,

�μ = 1

2

(
u†∂μu + u ∂μu

†
)

, (32)

where

U = exp

(√
2i


Fπ

)
, u2 = U . (33)

The Goldstone boson fields are collected in the matrix


 =
⎛
⎝π0/

√
2 + η/

√
6 π+ K+

π− −π0/
√

2 + η/
√

6 K 0

K− K̄ 0 −2η/
√

6

⎞
⎠ .

Counting the D-meson masses as order O(p0), the LO terms
in the chiral Lagrangian are of O(p), and the NLO terms are
ofO(p2). The NLO chiral Lagrangian describing the interac-
tions of the pseudoscalar charm mesons with the Goldstone
bosons is given by

L(2) =D
(−h0 〈χ+〉 − h1χ+ − h2

〈
uμu

μ
〉 − h3uμu

μ
)
D̄

+ DμD
(
h4

〈
uμuν

〉 − h5
{
uμuν

})Dν D̄, (34)

where χ+ = u†χu† +uχu and uμ = iu†∂μUu† . The quark
mass matrix enters via

χ = 2B · diag (mu, md , ms) , (35)
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where B = |〈0|q̄q|0〉| /F2
π . Further, Fπ is the pion decay

constant in the chiral limit. Since the interaction is quite
strong in some channels, and in one channel even a
bound state is produced, the interactions derived from the
Lagrangian given above are resummed using the Lippmann-
Schwinger equation. The LEC h1 can be fixed from the
SU(3) splitting between the D+

s and D+ masses, and the
LECs hi with i = 0, 2, . . . , 5, can be fixed by a fit to lat-
tice data [32]. The resulting amplitudes, that contain poles
in various channels, turn out to be also consistent with the
momentum dependence of the I = 1/2, non-strange scatter-
ing amplitudes [49] determined recently in lattice QCD [50],
and can describe the LHCb measured Dπ/DK̄ distributions
for a series of three-body B meson decays [51,52]. Since in
the Lagrangians above all light quark mass dependence is
explicit, we are now in the position to investigate system-
atically the quark mass dependence of the system. Varying
the up and down quark masses (the strange quark mass) is
equivalent to varying the pion mass (kaon mass). As we are
interested in the transition of the D∗

s0(2317) pole to a virtual
state, we lower the kaon mass.

Using the Lagrangian given in Eq. (34) we find the NLO
correction to the charmed meson masses to be

MD = Mphys.
D + 2h0

M2
K − Mphys. 2

K

Mphys.
D

, (36)

MDs = Mphys.
Ds

+ 2(h0 + h1)
M2

K − Mphys. 2
K

Mphys.
Ds

, (37)

where we considered isospin symmetry and used M2
K =

B(ms + m̂) for the kaon mass with m̂ = (mu + md)/2. The
values of h0 and h1 were determined to be h0 = 0.014 and
h1 = 0.42 [32]. Finally, following reference [48] we use that
the eta mass is given to this order by the Gell-Mann–Okubo
relation,

M2
η = 4

3
M2

K − 1

3
M2

π . (38)

Note that in the fits of Ref. [32] the physical value for the
pion decay constant, Fπ = 92.21 MeV, was used, since the
difference from its chiral limit value, and hence its pion or
kaon mass dependence, is a higher-order effect. We focus on
the sector that contains the D∗

s0(2317) and therefore need to
work with two coupled channels, namely DK and Dsη. The
resulting pole trajectories are shown in Fig. 5. At the physical
kaon mass (mK ≈ 500 MeV), the system is characterized by
a very asymmetric pair of poles, one on the first sheet close
to the threshold and the other on the second sheet far away
from the threshold (too distant to be seen in the plot). Thus,
the D∗

s0(2317) should indeed be interpreted as a hadronic
molecule. As the kaon mass is lowered, the two poles start to

approach each other. At a kaon mass of about 250 MeV the
leading pole moves from the first to the second sheet: at this
mass the D∗

s0(2317) turns into a virtual state.
Thus, as discussed in Sect. 3, the bound state does indeed

approach the threshold and then switches over to the second
sheet to form a virtual state when the kaon mass is lowered.
At the physical kaon mass, the effective range parameters
are given by a = −0.86 fm and r = −0.45 fm which gives
Z = Z̄ A = 0.30 or X = X̄ A = 0.70, employing either of
Eqs. (17) or (20). Moreover, as will be discussed at the end of
this section, at the physical kaon mass for the system at hand,
γ = 134 MeV and β ∼ |1/r eff.| = 330 MeV, where r eff. is
defined in Eq. (40) below, induced by the nearest threshold,
such that (γ /β) = 0.4, which quantifies the uncertainty.
Thus, according to the Weinberg criterion, the D∗

s0(2317)

is even compatible with purely molecular state. When we
lower the kaon mass, the compactness Z lowers further until
it reaches 0, when the pole hits the threshold. After this point,
formally the Weinberg criterion can no longer be applied as
discussed above. However, the compactness is expected to
be continuous under changes in a fundamental parameter as
the quark masses. Thus, just after the transition to the second
sheet, the state is still mostly molecular in nature, which is
captured in the extended compactness ZA.

For the system at hand, it is interesting to have a closer look
at the origin of the negative effective range reported above.
Because up to and including NLO there are only point inter-
actions, there is no obvious range in the system. From this,
one could expect r ≈ 0 in the molecular case, and, accord-
ingly, some negative effective range might be interpreted as
some admixture of a compact component. However, an addi-
tional scale enters through the Dsη channel. In the effective
range expansion of the DK scattering amplitude, this chan-
nel enters predominantly via the analytic continuation of the
unitarity cut contribution, namely

− i
g2
Dsη

g2
DK

√
2μDsη

(
MD+MK+ k2

2μDK
− (

MDs+Mη

))

= g2
Dsη

g2
DK

√
2μDsη

(
�M− k2

2μDK

)

=: g
2
Dsη

g2
DK

√
2μDsη �M + 1

2
r eff.k2 + O(k4) , (39)

where �M = MDs+Mη−MD−MK and gDsη and gDK

denote the coupling of the given partial wave to the Dsη

and DK channel, respectively, and we defined

r eff. = −g2
Dsη

g2
DK

√
μDsη

2μ2
DK�M

. (40)
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Fig. 6 Comparison of the effective range extracted from the scattering
amplitudes (black dashed line) with reff. (red solid line)

Thus, the sign of the term in Eq. (39) is fixed by unitarity. To
estimate the ratio of the couplings, we may use the strengths
of the DK → DK and DK → Dsη potentials at LO. With
these the ratio of the squared couplings in Eq. (40) is 3/4
(see, e.g., Ref. [53]). In Fig. 6, the effective range extracted
from the DK scattering amplitude directly is compared to the
effective parameter defined in Eq. (40). Clearly, the effective
range parameter is largely provided by the Dsη channel. For
small values of MK one finds that |r eff.| gets large, since �M
gets very small,1 which at the same time leads to a bad con-
vergence of the ERE for the single-channel DK scattering
amplitude. Clearly, as soon as the two thresholds get close
together, an estimate given in Eqs. (39) and (40) that treats
dynamically only a single two-hadron channel is no longer
applicable to interpret the findings from the coupled-channel
calculations discussed above. In such a case, a coupled chan-
nel generalisation of the Weinberg formalism is needed to
study the molecular admixture in a given state, as discussed,
e.g., in Refs. [16,21,23,25]. The discussion above shows how
the onset of a second channel becomes visible in an analysis
of the Weinberg type.

5 Further discussions and disclaimer

It was mentioned in various places that range corrections
can in some cases modify significantly the results, especially
for molecular states. This was already discussed above in
case of the D∗

s0(2317), where the range corrections to the Z
parameter were estimated to be as large as 40%. Recent stud-
ies showed [54,55] that range corrections can play an even
more important role in composite systems made of two heavy
mesons, as soon as the one-pion exchange is allowed to con-
tribute. The reason for this is two-fold: On the one hand, these

1 The Dsη and DK thresholds collide at MK � 130 MeV; decreasing
the kaon mass further, the Dsη threshold would be the lower one.

doubly-heavy systems are often driven by coupled chan-
nels (e.g. B B̄∗ and B∗ B̄∗ for Zb(10610) and Zb(10650)),
such that the neighbouring channel can induce large rel-
ative momenta, which would imply large contributions to
the effective range in line with Eq. (39). On the other hand,
because (a) the one-pion exchange comes with a tensor force
and (b) the coupled-channel momenta are large, coupled-
channel transitions to D-waves are strong and, because of
the small mass of the pion, not kinematically suppressed.
This mechanism can even push the poles above the threshold.
Nevertheless, although the imaginary parts of the resonance
poles in the complex E plane obtained in Ref. [55] are all
less than about 20 MeV, they satisfy |Re E res./Im E res.| � 1.
In view of Eq. (26), they still qualify as molecular states.

The derivation of the Weinberg compositeness criterion
and its extensions generally relies on that the scattering
amplitude near the threshold fulfils the effective-range expan-
sion, which is expected to be valid for the momenta much
smaller than the inverse range of forces. While in most cases
this is indeed correct, under certain specific conditions, the
interplay between quark states and a nonperturbatively inter-
acting hadron-hadron continuum may cause this picture to
fail. In particular, in Ref. [33] it was shown that the scat-
tering amplitude may also have zeros in the near-threshold
region if the following criteria are met: a) the hadronic inter-
action is sufficiently strong to support a bound or virtual state
and b) a quark state exists near the threshold with a weak cou-
pling to the hadronic channel. The appearance of such a zero
invalidates the effective-range expansion and corresponds to
three near-threshold poles in the scattering amplitude. Such
a scenario goes beyond the scope of the present study. The
reason is that with the pole locations of several states near
the threshold there is more than one small scale in the system
which may circumvent a controlled expansion. An example,
where such a case could occur was considered in Ref. [57],
where the interplay of the X (3872) and the charmonium state
χc1(2P), controlled by some mixing parameter, was consid-
ered, and accordingly several poles were found. However,
even the results of Ref. [57] for the compositeness of the
X (3872) are fully in line with the present analysis at least
for extreme values of the mixing parameter.

In many theoretical analyses of data with near threshold
structures, an effective Lagrangian approach is employed,
which does not involve explicit bare poles. It is assumed
that if additional poles exist, they are not in the vicinity of
thresholds and thus can be accounted for perturbatively via a
tower of (energy-dependent) contact interactions. The near-
threshold state in such a dynamical approach can be inter-
preted as molecular or compact even without the explicit
inclusion of a quarkonium component, see also Ref. [55]
for a related discussion. In this context, let us mention an
application of Eq. (20) to a new state predicted near the
J/ψ J/ψ threshold in Ref. [58] from an analysis of the recent
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LHCb data on the double-J/ψ spectrum [59]. In Ref. [58],
it was argued that the data can be well described using two
coupled-channel potential models (employed for construct-
ing the T -matrix via the Lippmann–Schwinger equation):
a two-channel (J/ψ J/ψ and J/ψψ(2S)) model with an
energy-dependent potential, and a three-channel (J/ψ J/ψ ,
J/ψψ(2S) and J/ψψ(3770)) model with a constant poten-
tial. In both models, a pole near the double-J/ψ threshold
was found. Though no pre-existing bare pole was introduced,
whether this state is molecular or compact depends strongly
on the dynamical mechanisms proposed: the use of energy-
dependent interactions yields predominantly a compact state
while a three-channel mechanism suggests its molecular
nature.

6 Conclusion

In this paper, we use certain plausible smoothness assump-
tions to extend the well established Weinberg criterion, intro-
duced to characterize the compositeness of bound states, to
virtual states and resonances. In particular, we demonstrate
that an extension, proposed in Ref. [31], is inconsistent with
these assumptions, while a slightly modified formula for the
compositeness, namely

X̄ A =
√

1

1 + |2r/a| ,

is consistent with all limiting cases and provides a smooth
transition from the regime of molecules to the regime of
compact states. By analyzing the pole trajectories and their
relation with the compactness, we find that near-threshold
virtual states are of molecular nature while narrow, near-
threshold resonances should be interpreted as predominantly
compact, as long as range corrections can be neglected. Fur-
ther, we argue that the compositeness originally proposed by
Weinberg as well as some of its extensions contain a pole
at r = −a/2. As a consequence, this criterion cannot be
applied to systems having bound states with positive effective
ranges even for a natural case when the range corrections are
suppressed relative to the binding momentum. This is illus-
trated using the deuteron as an example. On the other hand,
the compositeness proposed in this study is by construction
free of this pole and can be used to obtain reasonable esti-
mates up to the range corrections for the compositeness of
bound states, virtual states and resonances. We consider sev-
eral applications. First, we focus on NN scattering, where the
range corrections are of the order of the inversed pion mass,
to demonstrate that this system is predominantly composite
both at physical and unphysical pion masses. In addition, we
discuss the DK isoscalar system with the emphasis on the

pole trajectory of the D∗
s0(2317) state. This system is of par-

ticular interest here, since the leading range corrections do
not come from the exchange of a meson in the t-channel, but
from the nearest Dsη channel residing above the DK thresh-
old and coupled strongly to this system. It is demonstrated
that the contribution to the effective range in such a case is
always negative. Thus, if the Weinberg criterion is applied
naively to such a system the effect of the other threshold
can mimic a compact component although, as argued in this
study, it should be interpreted as a range correction.

Finally, we also argue that in some special cases (espe-
cially for molecular states) the values for the compositeness
can be changed significantly by range corrections. This is in
particular true for the systems involving several particle cou-
pled channels, where the pion t-channel exchange including
its sizeable S − D transitions driven by the tensor force con-
tributes. In those situations the conclusions described above
need to be modified and adapted. A detailed study of this
case requires further research that goes beyond the scope of
this work.
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Appendix A: Wigner bound

The Wigner’s causality inequality reads (see, e.g., Ref. [56])

dδl

dk
≥ −R + (−1)l

sin 2(δl + kR)

2k
, (A.1)

where δl is the phase shift for the l-th partial wave, and R is
the interaction radius. For the S-wave, considering the ERE

k cot δ0 = 1

a
+ 1

2
rk2, (A.2)

we have

dδl

dk
= sin(2δ0)

2k
− r sin2 δ0. (A.3)

From Eq. (A.1), we obtain the following bound for the effec-
tive range

r ≤ 1

sin2 δ0

[
R − 1

k
sin(kR) cos(2δ0 + kR)

]

≤ 2R

sin2 δ0
, (A.4)

noticing that 1 − 1
kR sin(kR) cos(2δ0 + kR) ∈ [0, 2]. One

sees that for a zero-range interaction, r must be negative
semi-definite, and for a finite-range interaction r is smaller
than some positive number.
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