000891433 001__ 891433
000891433 005__ 20240711114034.0
000891433 0247_ $$2doi$$a10.1016/j.nme.2019.03.016
000891433 0247_ $$2Handle$$a2128/27504
000891433 0247_ $$2WOS$$aWOS:000470746100080
000891433 037__ $$aFZJ-2021-01518
000891433 082__ $$a624
000891433 1001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b0$$eCorresponding author
000891433 245__ $$aImproved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience
000891433 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000891433 3367_ $$2DRIVER$$aarticle
000891433 3367_ $$2DataCite$$aOutput Types/Journal article
000891433 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648536805_18809
000891433 3367_ $$2BibTeX$$aARTICLE
000891433 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891433 3367_ $$00$$2EndNote$$aJournal Article
000891433 520__ $$aERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the “ERO-min” fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations.
000891433 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891433 588__ $$aDataset connected to CrossRef
000891433 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b1
000891433 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b2
000891433 7001_ $$0P:(DE-HGF)0$$aLisgo, S. W.$$b3
000891433 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b4
000891433 7001_ $$0P:(DE-HGF)0$$aBorodkina, I.$$b5
000891433 7001_ $$0P:(DE-Juel1)171509$$aEksaeva, Alina$$b6$$ufzj
000891433 7001_ $$0P:(DE-HGF)0$$aSafi, E.$$b7
000891433 7001_ $$0P:(DE-HGF)0$$aNordlund, K.$$b8
000891433 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b9
000891433 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b10
000891433 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.03.016$$gVol. 19, p. 510 - 515$$p510 - 515$$tNuclear materials and energy$$v19$$x2352-1791$$y2019
000891433 8564_ $$uhttps://juser.fz-juelich.de/record/891433/files/1-s2.0-S2352179118302722-main.pdf$$yOpenAccess
000891433 909CO $$ooai:juser.fz-juelich.de:891433$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b0$$kFZJ
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b1$$kFZJ
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b4$$kFZJ
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171509$$aForschungszentrum Jülich$$b6$$kFZJ
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b9$$kFZJ
000891433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b10$$kFZJ
000891433 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891433 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000891433 9141_ $$y2021
000891433 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000891433 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891433 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891433 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000891433 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000891433 920__ $$lyes
000891433 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891433 9801_ $$aFullTexts
000891433 980__ $$ajournal
000891433 980__ $$aVDB
000891433 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891433 980__ $$aUNRESTRICTED
000891433 981__ $$aI:(DE-Juel1)IFN-1-20101013