001     891434
005     20240711114034.0
024 7 _ |a 10.1016/j.compositesa.2018.01.022
|2 doi
024 7 _ |a 1359-835X
|2 ISSN
024 7 _ |a 1878-5840
|2 ISSN
024 7 _ |a WOS:000429892800036
|2 WOS
037 _ _ |a FZJ-2021-01519
082 _ _ |a 660
100 1 _ |a Mao, Y.
|0 P:(DE-Juel1)165931
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616752832_22825
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In future fusion reactors, tungsten is a main candidate material for plasma-facing components. However, the intrinsic brittleness of tungsten is an issue under the extreme fusion environment. To overcome this drawback, tungsten fiber-reinforced tungsten (Wf/W) composites are being developed relying on an extrinsic toughening principle. In this study Wf/W composites are produced by a Field-Assisted Sintering Technology (FAST) process with different fiber–matrix interfaces. The fracture behavior was studied by 3-point bending tests on notched samples. 4-point bending tests and tensile tests are performed to measure the flexural strength and tensile strength, respectively. Wf/W with a weak interface shows a typical pseudo-ductile fracture behavior, similar to ceramic matrix composites. A strong interface is beneficial to achieve higher flexural strength and tensile strength, but in turn, weakens the pseudo-ductile behavior.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 1
|u fzj
700 1 _ |a Riesch, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sistla, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Almanstötter, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jasper, B.
|0 P:(DE-Juel1)158038
|b 5
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 6
|u fzj
700 1 _ |a Höschen, T.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gietl, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 9
|u fzj
700 1 _ |a Broeckmann, C.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.compositesa.2018.01.022
|g Vol. 107, p. 342 - 353
|0 PERI:(DE-600)2012223-8
|p 342 - 353
|t Composites / A
|v 107
|y 2018
|x 1359-835X
856 4 _ |u https://juser.fz-juelich.de/record/891434/files/1-s2.0-S1359835X18300204-main-2.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/891434/files/1-s2.0-S1359835X18300204-main-2.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/891434/files/1-s2.0-S1359835X18300204-main-2.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/891434/files/1-s2.0-S1359835X18300204-main-2.jpg?subformat=icon-700
|x icon-700
|y Restricted
909 C O |o oai:juser.fz-juelich.de:891434
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPOS PART A-APPL S : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMPOS PART A-APPL S : 2019
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21