001     891440
005     20240711114035.0
024 7 _ |a 10.1016/j.fusengdes.2018.04.028
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a WOS:000452575300012
|2 WOS
037 _ _ |a FZJ-2021-01522
082 _ _ |a 530
100 1 _ |a Litnovsky, A.
|0 P:(DE-Juel1)130090
|b 0
|e Corresponding author
245 _ _ |a Smart first wall materials for intrinsic safety of a fusion power plant
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616754823_9850
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The first wall armor of a DEMOnstration fusion power plant (DEMO) is planned to be built from tungsten. However, in case of loss-of-coolant accident with air ingress, the temperature of the first wall may exceed 1000 °C due to nuclear decay heat. At such temperatures, tungsten forms volatile radioactive oxides, which may be mobilized into the environment at a rate of 10–600 kg per hour.Advanced “smart” tungsten alloys adjust their properties to the environment: during the plasma operation, preferential sputtering will form almost pure tungsten surface facing the plasma. In case of an accident, the remaining alloying elements form a protective layer, preventing tungsten mobilization.The new smart alloys contain tungsten (W), chromium (Cr) and yttrium (Y). The first bulk smart alloys produced using field-assisted sintering technique, revealed excellent oxidation resistance for a timescale of 10–20 hours. W-Cr-Y systems underwent combined plasma and oxidation test. During plasma exposure, smart alloys demonstrated nearly the same mass loss as the reference pure tungsten samples. Subsequent oxidation confirmed superior oxidation resistance of new alloys compared to the former W-Cr-Ti systems.Experiments attaining oxidation times and plasma fluence required for DEMO, are started. First results show necessity in further improvement of W-Cr-Y alloys.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klein, F.
|b 1
700 1 _ |a Schmitz, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wegener, T.
|0 P:(DE-Juel1)161367
|b 3
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 4
700 1 _ |a Gilbert, M. R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 6
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 7
700 1 _ |a Tan, Xiaoyue
|0 P:(DE-Juel1)180592
|b 8
|u fzj
700 1 _ |a Mao, Y.
|0 P:(DE-Juel1)165931
|b 9
|u fzj
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 10
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 11
|u fzj
700 1 _ |a Gonzalez-Julian, J.
|0 P:(DE-Juel1)162271
|b 12
773 _ _ |a 10.1016/j.fusengdes.2018.04.028
|g Vol. 136, p. 878 - 882
|0 PERI:(DE-600)1492280-0
|p 878 - 882
|t Fusion engineering and design
|v 136
|y 2018
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/891440/files/1-s2.0-S0920379618303168-main.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:891440
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180592
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)162271
913 1 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1242
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21