000891443 001__ 891443
000891443 005__ 20240711114035.0
000891443 0247_ $$2doi$$a10.1016/j.nme.2017.01.006
000891443 0247_ $$2Handle$$a2128/27508
000891443 0247_ $$2WOS$$aWOS:000417293300192
000891443 037__ $$aFZJ-2021-01525
000891443 082__ $$a624
000891443 1001_ $$0P:(DE-HGF)0$$aBeckers, M.$$b0
000891443 245__ $$aInvestigations of the first-wall erosion of DEMO with the CELLSOR code
000891443 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000891443 3367_ $$2DRIVER$$aarticle
000891443 3367_ $$2DataCite$$aOutput Types/Journal article
000891443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616756979_22825
000891443 3367_ $$2BibTeX$$aARTICLE
000891443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891443 3367_ $$00$$2EndNote$$aJournal Article
000891443 520__ $$aFusion reactor systems codes (SCs) are 0.5d codes used for optimization studies towards the design of a tokamak demonstration power plant (DEMO). These codes usually comprise a description of the core plasma physics, technology aspects and reactor economy, while only a coarse description of plasma-wall interaction (PWI) aspects is included. Therefore, the new systems code extension CELLSOR (Code to Estimate the Lifetime Limited by Sputtering Of a Reactor wall) was developed in order to allow inclusion of PWI effects into reactor optimization studies. CELLSOR is foreseen to be used as a secondary tool for PWI evaluations, taking design point parameters from the European PROCESS systems code as input. CELLSOR consists of an analytical treatment of the plasma in the scrape-off layer (SOL) for fuel ions (D, T), solving the 1.5d continuity equation in fluid approximation to obtain perpendicular flux and ion density in the SOL, and a fast Monte-Carlo description of the neutral particle (D, T) behavior. The Monte Carlo (MC) implementation of the new code extension was successfully benchmarked with results from the EIRENE code. The trajectories of eroded neutral W were computed within CELLSOR ERO, an add-on code used for calculations of prompt re-deposition and self-sputtering. The damage by ions was calculated analytically for fuel (D, T), ash (He), seeding gas (N) and wall material (W), including the acceleration by a sheath in front of the wall, assuming radially constant impurity concentrations.
000891443 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000891443 588__ $$aDataset connected to CrossRef
000891443 7001_ $$0P:(DE-Juel1)129967$$aBiel, W.$$b1$$eCorresponding author
000891443 7001_ $$0P:(DE-Juel1)5089$$aTokar, M.$$b2
000891443 7001_ $$0P:(DE-Juel1)130133$$aSamm, U.$$b3
000891443 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2017.01.006$$gVol. 12, p. 1163 - 1170$$p1163 - 1170$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000891443 8564_ $$uhttps://juser.fz-juelich.de/record/891443/files/1-s2.0-S235217911630182X-main.pdf$$yOpenAccess
000891443 909CO $$ooai:juser.fz-juelich.de:891443$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b1$$kFZJ
000891443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130133$$aForschungszentrum Jülich$$b3$$kFZJ
000891443 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891443 9132_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000891443 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891443 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000891443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000891443 920__ $$lyes
000891443 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891443 9801_ $$aFullTexts
000891443 980__ $$ajournal
000891443 980__ $$aVDB
000891443 980__ $$aUNRESTRICTED
000891443 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891443 981__ $$aI:(DE-Juel1)IFN-1-20101013