001     891443
005     20240711114035.0
024 7 _ |a 10.1016/j.nme.2017.01.006
|2 doi
024 7 _ |a 2128/27508
|2 Handle
024 7 _ |a WOS:000417293300192
|2 WOS
037 _ _ |a FZJ-2021-01525
082 _ _ |a 624
100 1 _ |a Beckers, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigations of the first-wall erosion of DEMO with the CELLSOR code
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616756979_22825
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fusion reactor systems codes (SCs) are 0.5d codes used for optimization studies towards the design of a tokamak demonstration power plant (DEMO). These codes usually comprise a description of the core plasma physics, technology aspects and reactor economy, while only a coarse description of plasma-wall interaction (PWI) aspects is included. Therefore, the new systems code extension CELLSOR (Code to Estimate the Lifetime Limited by Sputtering Of a Reactor wall) was developed in order to allow inclusion of PWI effects into reactor optimization studies. CELLSOR is foreseen to be used as a secondary tool for PWI evaluations, taking design point parameters from the European PROCESS systems code as input. CELLSOR consists of an analytical treatment of the plasma in the scrape-off layer (SOL) for fuel ions (D, T), solving the 1.5d continuity equation in fluid approximation to obtain perpendicular flux and ion density in the SOL, and a fast Monte-Carlo description of the neutral particle (D, T) behavior. The Monte Carlo (MC) implementation of the new code extension was successfully benchmarked with results from the EIRENE code. The trajectories of eroded neutral W were computed within CELLSOR ERO, an add-on code used for calculations of prompt re-deposition and self-sputtering. The damage by ions was calculated analytically for fuel (D, T), ash (He), seeding gas (N) and wall material (W), including the acceleration by a sheath in front of the wall, assuming radially constant impurity concentrations.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Biel, W.
|0 P:(DE-Juel1)129967
|b 1
|e Corresponding author
700 1 _ |a Tokar, M.
|0 P:(DE-Juel1)5089
|b 2
700 1 _ |a Samm, U.
|0 P:(DE-Juel1)130133
|b 3
773 _ _ |a 10.1016/j.nme.2017.01.006
|g Vol. 12, p. 1163 - 1170
|0 PERI:(DE-600)2808888-8
|p 1163 - 1170
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/891443/files/1-s2.0-S235217911630182X-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891443
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129967
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130133
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21