000891444 001__ 891444
000891444 005__ 20240711085653.0
000891444 0247_ $$2doi$$a10.1016/j.nme.2017.03.033
000891444 0247_ $$2Handle$$a2128/27509
000891444 0247_ $$2WOS$$aWOS:000417293300003
000891444 037__ $$aFZJ-2021-01526
000891444 082__ $$a624
000891444 1001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b0$$eCorresponding author$$ufzj
000891444 245__ $$aPlasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices
000891444 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000891444 3367_ $$2DRIVER$$aarticle
000891444 3367_ $$2DataCite$$aOutput Types/Journal article
000891444 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616757271_27252
000891444 3367_ $$2BibTeX$$aARTICLE
000891444 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891444 3367_ $$00$$2EndNote$$aJournal Article
000891444 520__ $$aRobust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs). For an electricity-producing fusion power plant at power density Psep/R > 15 MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI) codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free) metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures), SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation affecting pedestal pressure and hence Psep.
000891444 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000891444 588__ $$aDataset connected to CrossRef
000891444 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b1$$ufzj
000891444 7001_ $$0P:(DE-HGF)0$$aWischmeier, M.$$b2
000891444 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3$$ufzj
000891444 7001_ $$0P:(DE-HGF)0$$aJarvinen, A.$$b4
000891444 7001_ $$aReimold, F.$$b5
000891444 7001_ $$0P:(DE-HGF)0$$aAho-Mantila, L.$$b6
000891444 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2017.03.033$$gVol. 12, p. 3 - 17$$p3 - 17$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000891444 8564_ $$uhttps://juser.fz-juelich.de/record/891444/files/1-s2.0-S2352179116300370-main.pdf$$yOpenAccess
000891444 909CO $$ooai:juser.fz-juelich.de:891444$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b0$$kFZJ
000891444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b1$$kFZJ
000891444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b3$$kFZJ
000891444 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891444 9132_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891444 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000891444 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891444 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891444 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000891444 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000891444 920__ $$lyes
000891444 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891444 9801_ $$aFullTexts
000891444 980__ $$ajournal
000891444 980__ $$aVDB
000891444 980__ $$aUNRESTRICTED
000891444 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891444 981__ $$aI:(DE-Juel1)IMD-2-20101013