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REMINDER

(iv) The long-ranged part of the pion exchange between
the Bð�Þ mesons is not considered.2

As a result of these approximations, the effective elastic-
to-elastic channel transition potential takes the form

Veff
αβ ðM;p;p0Þ¼vαβðp;p0Þ−i

X
i

mHi
mhi

2πM
giαgiβk

2liþ1
i ; ð11Þ

where the second term on the right-hand side describes the
transitions through the intermediate inelastic channels; the
real parts of the inelastic loops are absorbed into the low-
energy constants Cd and Cf.
Then, the Lippmann-Schwinger equation for the

ϒð10860Þ decaying into open-bottom final states can be
written as [33]

UαðM;pÞ

¼FαðM;pÞ−
X
β

Z
UβðM;qÞGβðM;qÞVeff

βαðM;q;pÞ d3q
ð2πÞ3 ;

ð12Þ

whereUαðM;pÞ denotes the physical production amplitude
of the αth elastic channel from a pointlike S-wave source,
and FBB̄� ðM;pÞ¼−FB�B̄� ðM;pÞ¼1 as dictated by HQSS.
The Green’s function for a two-heavy-meson intermediate
state reads

GαðM;qÞ¼ 2μα
q2−p2

α− i0
; p2

α≡2μαðM−mα
thÞ; ð13Þ

where mα
th stands for the αth elastic threshold and μα is

the reduced mass in this channel. Other components of the
multichannel amplitude responsible for production of the
inelastic channels in the final state can be obtained from
UαðM;pÞ algebraically, which is a consequence of the
omitted direct interactions in the inelastic channels. In

particular, for the ith inelastic channel in the final state
we have

UiðM;kiÞ

¼−
X
α

Z
d3q
ð2πÞ3UαðM;qÞGαðM;qÞvαiðM;q;kiÞ; ð14Þ

where the momentum ki is defined in Eq. (7) above. It has
to be noticed that the Born amplitudes FiðM;pÞ coming
from the inelastic sources were neglected in Eq. (14).
This is justified for the πhbðmPÞ channels, where the data
are dominated by the Zbð10610Þ and Zbð10650Þ poles
emerging from the Bð�ÞB̄� dynamics. The corresponding
line shapes were included into the combined fit performed
in Ref. [33]. On the contrary, in the heavy-spin-conserving
πϒðnSÞ channels, the Born term needs to be kept and the
ππ interaction in the final state has to be included. How this
can be done in a model-independent way will be discussed
in detail below.
The one-dimensional distributions for the differential

widths in the elastic (Bð�ÞB̄�) and inelastic [πhbðmPÞ]
channels used in Ref. [33] read

dΓα

dM
¼ 1

3

2mBð�Þ2mB�2mϒð10860Þ
32π3m2

ϒð10860Þ
p�
πpαjUαj2;

dΓi

dM
¼ 1

3

2mhi2mHi
2mϒð10860Þ

32π3m2
ϒð10860Þ

p�
πpijUij2; ð15Þ

respectively, where p�
π is the three-momentum of the

spectator pion in the rest frame of the πϒð10860Þ
and pαðpiÞ is the three-momentum in the αth elastic
(ith inelastic) channel in the rest frame of the B�B̄ð�Þ
(πϒðnSÞ=πhbðmPÞ) system. Then, the total branching
fraction in an elastic or inelastic channel x is defined as

Brx ¼
ΓxP

2
α¼1 Γα þ

P
5
i¼1 Γi

; ð16Þ

where

(a) (b) (c) (d)

FIG. 1. The line shapes in the elastic channels BB̄� and B�B̄� and inelastic channels πhbðmPÞ (m ¼ 1, 2) provided by scheme A from
Ref. [33]. Experimental data from Refs. [1,18] are shown as dots with error bars.

2As was demonstrated in Ref. [33], the short-range central part
of the OPE can be absorbed effectively into the low-energy
constants Cd and Cf.
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034016-4

Data: Belle, PRL108(2012)122001 & PRL116(2016)212001
Curves: model A (point interactions only), Q. Wang et al., PRD98(2018)074023

Charged states Zb(10610) and Zb(10650) seen in
Υ(10860)→ π[πΥ(nS)] (n=1,2,3) [bb̄]Spin1 → [bb̄]Spin1
Υ(10860)→ π[πhb(mS)] (m=1,2) [bb̄]Spin1 → [bb̄]Spin0
Υ(10860)→ π[B(∗)B̄(∗)]

masses very close to the B∗B̄ and B∗B̄∗ thresholds, respectively
decay almost exclusively to open bottom channels

Excellent candidates for hadronic molecules
A. E. Bondar et al. PRD84(2011)054010
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THE ππΥ FINAL STATES
Both B(∗)B̄(∗) and ππ interaction matter simultaneously.

VIII. NATURE OF THE Zbð10610Þ
AND Zbð10650Þ FROM DATA

Important information on the nature of the near-threshold
states like the Zbð10610Þ and Zbð10650Þ is encoded in the
singularity structure of the amplitudes extracted from the
fit,5 in particular the pole positions and pole residues
[53–56]. Therefore we have a closer look at the pole
locations of the Zb states in this section.

The full tmatrix considered here has in total seven coupled
channels. One might think that the task of searching for the
poles of the t matrix is formidable, because the number of
Riemann sheets is 27 ¼ 128. However, in practice the
problem is as simple as a two-channel one. This is because
the thresholds of all the inelastic channels are far away from
those of the BB̄� and B�B̄� channels and the interactions
among the inelastic channels are veryweak and can be safely
neglected as it is anyhow done in this paper. Thus any pole
which has the potential to produce ameasurable effect should
reside well above all the inelastic thresholds. Therefore, the
relevant Riemann-sheet structure is practically the same as
that for the two-channel case.
In order to search for the poles in these relevant Riemann

sheets, one needs to put all the inelastic channels in their
corresponding unphysical sheets. This is achieved by an
analytic continuation with a practical trick of changing the
sign of the imaginary part of the inelastic channel Green’s
functions given in Eqs. (57), (58) and (62).
To study the poles in the two-channel case with the

quantum numbers 1þ−, it is convenient to make a con-
formal mapping from the four-Riemann-sheet complex
energy plane to the single complex ω plane [57]. For a
given energy E, we can write

E ¼ k21
2μ

¼ k22
2μ

þ δ; ð106Þ

where δ ¼ mB� −mB denotes the energy gap between the
two elastic thresholds. Instead of two complex momenta k1
and k2 constrained by the two conditions from Eq. (106),
we switch to the complex variable ω, defined via

k1 ¼
ffiffiffiffiffi
μδ

2

r �
ωþ 1

ω

�
; k2 ¼

ffiffiffiffiffi
μδ

2

r �
ω −

1

ω

�
: ð107Þ

This allows us to rewrite the energy as

E ¼ δ

4

�
ω2 þ 1

ω2
þ 2

�
: ð108Þ

By construction, the complex ω plane is free of uni-
tary cuts.
In the first plot in Fig. 8 we show the mapping of the four

Riemann sheets of the complex energy plane, labeled as

RS-I∶ Imk1 > 0; Imk2 > 0;

RS-II∶ Imk1 < 0; Imk2 > 0;

RS-III∶ Imk1 > 0; Imk2 < 0;

RS-IV∶ Imk1 < 0; Imk2 < 0; ð109Þ

onto the ω complex plane. The thick solid line corresponds
to real values of the energy E on the first sheet, and the part
of the imaginary ω axis with Imω > 1 corresponds to
negative values of E, thus representing energies below the
BB̄� threshold.
It is easy to see from Eq. (107) that the BB̄� threshold

(k1 ¼ 0) appears at ω ¼ �i and the B�B̄� (k2 ¼ 0) thresh-
old appears at ω ¼ �1. Thus the near-threshold regions
correspond to the vicinities of jωj ¼ 1. To be able to
distinguish between the poles according to their relevance
for producing structures in the amplitude in the physical
region, it is worthwhile to discuss the structure of the
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FIG. 7. Plots (a), (b), and (c) are for the predicted line shapes of the Zbð10610Þ and Zbð10650Þ in the πϒð2SÞ channel for fits A, B, and
C, respectively. To guide the eye, as plot (d), we also show the corresponding experimental figure adapted from Ref. [46]. Notice that the
behavior of the line shape below the left shoulder of the lower peak is influenced by the effects which lie beyond the scope of the present
paper and will be addressed in future publications. Notice also that the presence of the nonresonant background in the experimental
figure does not allow its direct comparison with the predicted line shapes.

5It has to be noticed that the obtained values of the parameters
cannot be compared directly with those from, e.g., Ref. [39]
since, in the latter paper, a Gaussian vertex form factor was used
to regularize the Lippmann-Schwinger equation and the contact
terms are scale dependent.

INTERPLAY OF QUARK AND MESON DEGREES OF … PHYSICAL REVIEW D 93, 074031 (2016)

074031-15

Data: Belle, PRD91(2015)072003

Goal: Proper inclusion of both interactions and their interplay
Tools: Dispersion theory + chiral perturbation theory
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DEFINITION OF THE PROBLEM
The difference between the transitions to hb(mP) and Υ(nS):

Υ(5S) → Υ(nS)ππ

Υ(5S) → hb(mP)ππ

To reach the S = 0 hb states: Zb states needed as doorway

=⇒ Signal only in the Zb mass range

The S = 1 Υ(nS) states can be reached directly:

=⇒ Direct transitions feed amplitude outside Zb peaks
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DISCLAIMER
We here focus on the proper inclusion of the ππ interaction

V. Baru et al., PRD103(2021)034016

with special emphasis on how to quantify imaginary parts
in contrast to D.A.S. Molnar et al. PLB 797(2019)13485 (for Zc states)

We therefore:

use a simplified model for the Zb-states

=⇒ Contact interactions only; no one-pion exchange

use Zb-parameters from an earlier fit to B(∗)B̄(∗) and hb(mP)π
Fit A of Q. Wang et al., PRD98(2018)074023

=⇒ No combined fit of all channels (yet)
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THE KHURI-TREIMAN FORMALISM
N. N. Khuri and S. B. Treiman, PR119(1960)1115; revisited since F. Niecknig, B. Kubis and S. P. Schneider, EPJC72(2012)2014

Υ

Υ′

π

π

Zb

π

π

Amplitude M̂ = M̂R + M̂L, where
M̂R (M̂L) has only a right (left) hand cut

mmax.
ππ > 1 GeV

=⇒ ππ − K K̄ coupled system needed

M̂ can be reconstructed dispersively — for ππ S-wave

M̂(s) = M̂L(s) +
Ω̂0(s)

π

∫ ∞
4m2

π

ds′
Ω̂−1

0 (s′)T̂0(s′)σ̂(s′)M̂L
0 (s′)

s′ − s − i0
.

with σij(s) = δij(1− sth
i /s)1/2 and the Omnès matrix

Ω̂0(s) =
1
π

∫ ∞
4m2

π

ds′
T̂0
∗
(s′)σ̂(s)Ω̂0(s′)
s′ − s − i0

Input needed: T̂0(s) and M̂L(s)
(

ML
0 (s) = 1

2

∫ +1
−1dz ML(s, t ,u)

)
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ππ − K K̄ SCATTERING

T̂0 =

(
Tππ→ππ Tππ→K K̄
TK K̄→ππ TK K̄→K K̄

)
=

(
(ηe2iδ−1)/2iσπ geiψ

geiψ (ηe2i(ψ−δ)−1)/2iσK

)
where η =

√
1− 4g2 σπ σK θ(s − 4m2

K ).
L. Y. Dai and M. R. Pennington, PRD90(2014)036004Status Ω(s): ππ S- and P -waves
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LEFT-HAND CUT CONTRIBUTION

Υ(10860)

π

Υ(nS)

π

B∗

B(∗)

Tαj

Υ(10860)

π

Υ(nS)

π

B∗

B(∗)

Tαj

ML = U(t) + U(u) =

∫ µ2
max

µ2
min

dµ2ρ(µ2)ML
stable(t ,u;µ) .

The information on the structure/nature of the Zb states is in

ρ(µ2) = −1
π

Im U(µ2)

and we get for Khuri-Treiman integral (anomalous contrib. not shown)

Î0(s) =

∫ µ2
max

µ2
min

dµ2ρ(µ2)
1
π

∫ ∞
4m2

π

ds′
Ω̂−1

0 (s′)T̂ (s′)σ̂(s′)M̂L
stable 0(s′;µ)

s′ − s − i0
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REMARKS ON THE IM.-PARTS
To ensure convergence and to suppress high energies
Î0 needs subtractions:

Î(n)
0 (s) = P̂n−1(s) +

sn

π

∫ ∞
4m2

π

ds′

s′n
Ω̂−1

0 (s′)T̂ (s′)σ̂(s′)M̂L
0 (s′)

s′ − s − i0

where the coefficients of P̂n−1(s) are in general complex,
since M̂L

0 (s′) has imaginary part D.A.S. Molnar et al. PLB 797(2019)13485 (for Zc states)

However, the integral over Im(M̂L
0 (s′)) is finite, s.t.:

ImP̂n−1(s) =
n−1∑
k=0

sk

π

∫ ∞
4m2

π

ds′

s′(k+1)
Ω̂−1

0 (s′)T̂ (s′)σ̂(s′) ImM̂L
0 (s′)

and we only need to fit R̂n−1(s) = ReP̂n−1(s) (we chose n = 2)

Its structure is fixed by matching to LO ChPT Y.H. Chen et al., PRD95(2017)034022
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RESULTS
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We fit 3 parameters
(c1, c2 (ChPT), N)
to the 2D Dalitzplot

Zbs only

+ KT integral

+ polynomial

+ D-wave

Good description

small # of para.

syst. deviations
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SUMMARY/OUTLOOK
A consistent inclusion of crossed channel effects is possible!

We use input from ππ − K K̄ scattering
=⇒ The total number of parameters is small
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Next steps:

Use improved Zb
description (with OPE)

Perform combined fits of
all channels

Study also Υ(4S) and
Υ(3S) decays

This will allow for a high accuracy extraction of the Zb pole parameters
and reliable prediction for the spin partner states
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