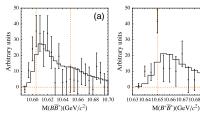
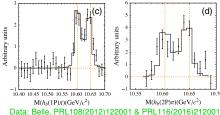
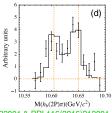
DIPION TRANSITIONS AND BOTTOMONIUMLIKE STATES

| C. Hanhart with V. Baru, E. Epelbaum, A.A. Filin, R.V. Mizuk, A.V. Nefediev and S. Ropertz |

REMINDER







Curves: model A (point interactions only), Q. Wang et al., PRD98(2018)074023

• Charged states $Z_b(10610)$ and $Z_b(10650)$ seen in

(b)

- $\Upsilon(10860) \rightarrow \pi[\pi\Upsilon(nS)] \text{ (n=1,2,3)} \quad [bb]_{\text{Spin}1} \rightarrow [bb]_{\text{Spin}1}$
- $\Upsilon(10860) \to \pi[\pi h_b(mS)] \text{ (m=1,2)} \quad [b\bar{b}]_{Spin1} \to [b\bar{b}]_{Spin0}$

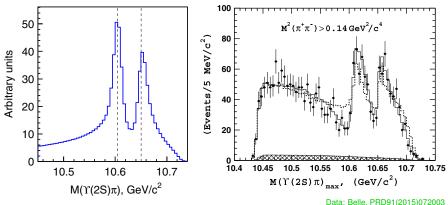
- $\Upsilon(10860) \to \pi[B^{(*)}\bar{B}^{(*)}]$
- masses very close to the $B^*\bar{B}$ and $B^*\bar{B}^*$ thresholds, respectively
- decay almost exclusively to open bottom channels

Excellent candidates for hadronic molecules

A. E. Bondar et al. PRD84(2011)054010

THE $\pi\pi\Upsilon$ FINAL STATES

Both $B^{(*)}\bar{B}^{(*)}$ and $\pi\pi$ interaction matter simultaneously.



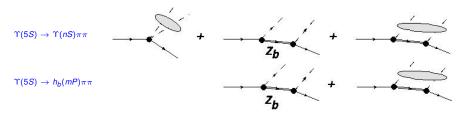
Data: Belle, PRD91(2015)072003

Goal: Proper inclusion of both interactions and their interplay

Tools: Dispersion theory + chiral perturbation theory

DEFINITION OF THE PROBLEM

The difference between the transitions to $h_b(mP)$ and $\Upsilon(nS)$:



To reach the S = 0 h_b states: Z_b states needed as doorway \implies Signal only in the Z_b mass range

The $S = 1 \Upsilon(nS)$ states can be reached directly:

 \implies Direct transitions feed amplitude outside Z_b peaks

DISCLAIMER

We here focus on the proper inclusion of the $\pi\pi$ interaction

V. Baru et al., PRD103(2021)034016

with special emphasis on how to quantify imaginary parts

in contrast to D.A.S. Molnar et al. PLB 797(2019)13485 (for Z_c states)

We therefore:

■ use a simplified model for the Z_b-states

⇒ Contact interactions only; no one-pion exchange

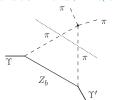
• use Z_b -parameters from an earlier fit to $B^{(*)}\bar{B}^{(*)}$ and $h_b(mP)\pi$

Fit A of Q. Wang et al., PRD98(2018)074023

⇒ No combined fit of all channels (yet)

THE KHURI-TREIMAN FORMALISM

N. N. Khuri and S. B. Treiman, PR119(1960)1115; revisited since F. Niecknig, B. Kubis and S. P. Schneider, EPJC72(2012)2014



- Amplitude $\hat{M} = \hat{M}^R + \hat{M}^L$, where \hat{M}^R (\hat{M}^L) has only a right (left) hand cut
- $\blacksquare m_{\pi\pi}^{\text{max.}} > 1 \text{ GeV}$ $\Longrightarrow \pi\pi K\bar{K} \text{ coupled system needed}$

 \hat{M} can be reconstructed dispersively — for $\pi\pi$ S-wave

$$\hat{M}(s) = \hat{M}^{L}(s) + \frac{\hat{\Omega}_0(s)}{\pi} \int_{4m_{-}^2}^{\infty} ds' \frac{\hat{\Omega}_0^{-1}(s')\hat{T}_0(s')\hat{\sigma}(s')\hat{M}_0^{L}(s')}{s' - s - i0}.$$

with $\sigma_{ij}(s) = \delta_{ij} (1 - s_i^{\rm th}/s)^{1/2}$ and the Omnès matrix

$$\hat{\Omega}_0(s) = rac{1}{\pi} \int_{4m^2}^{\infty} ds' rac{\hat{T}_0^*(s')\hat{\sigma}(s)\hat{\Omega}_0(s')}{s'-s-i0}$$

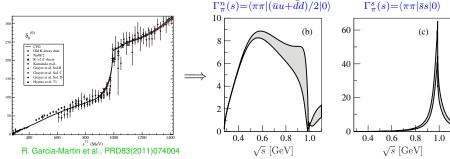
Input needed: $\hat{T}_0(s)$ and $\hat{M}^L(s)$ $\left(M_0^L(s) = \frac{1}{2} \int_{-1}^{+1} dz \, M^L(s,t,u)\right)$

$\pi\pi - K\bar{K}$ SCATTERING

$$\hat{T}_0 = \begin{pmatrix} T_{\pi\pi\to\pi\pi} & T_{\pi\pi\to K\bar{K}} \\ T_{K\bar{K}\to\pi\pi} & T_{K\bar{K}\to K\bar{K}} \end{pmatrix} = \begin{pmatrix} (\eta e^{2i\delta}-1)/2i\sigma_\pi & ge^{i\psi} \\ ge^{i\psi} & (\eta e^{2i(\psi-\delta)}-1)/2i\sigma_K \end{pmatrix}$$

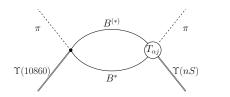
where
$$\eta = \sqrt{1 - 4g^2 \, \sigma_\pi \, \sigma_K \, \theta(s - 4m_K^2)}$$
.

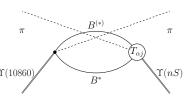
L. Y. Dai and M. R. Pennington, PRD90(2014)036004



Tested in $B_d o J/\psi\pi\pi/Kar K$ & $B_s o J/\psi\pi\pi/Kar K$

LEFT-HAND CUT CONTRIBUTION





$$M^L = U(t) + U(u) = \int_{\mu_{\min}^2}^{\mu_{\max}^2} d\mu^2
ho(\mu^2) M_{\mathrm{stable}}^L(t, u; \mu) .$$

The information on the structure/nature of the Z_b states is in

$$\rho(\mu^2) = -\frac{1}{\pi} \operatorname{Im} U(\mu^2)$$

and we get for Khuri-Treiman integral (anomalous contrib. not shown)

REMARKS ON THE IM.-PARTS

To ensure convergence and to suppress high energies \hat{l}_0 needs subtractions:

$$\hat{l}_0^{(n)}(s) = \hat{\mathcal{P}}_{n-1}(s) + \frac{s^n}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'^n} \frac{\hat{\Omega}_0^{-1}(s')\hat{T}(s')\hat{\sigma}(s')\hat{M}_0^L(s')}{s' - s - i0}$$

where the coefficients of $\hat{\mathcal{P}}_{n-1}(s)$ are in general complex, since $\hat{M}_0^L(s')$ has imaginary part D.A.S. Molnar et al. PLB 797(2019)13485 (for Z_c states)

However, the integral over $Im(\hat{M}_0^L(s'))$ is finite, s.t.:

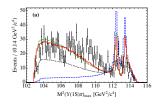
$$\operatorname{Im} \hat{\mathcal{P}}_{n-1}(s) = \sum_{k=0}^{n-1} \frac{s^k}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^{(k+1)}} \hat{\Omega}_0^{-1}(s') \hat{T}(s') \hat{\sigma}(s') \operatorname{Im} \hat{M}_0^L(s')$$

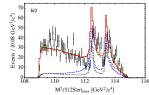
and we only need to fit $\hat{R}_{n-1}(s) = \text{Re}\hat{\mathcal{P}}_{n-1}(s)$ (we chose n=2)

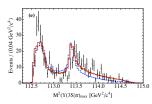
Its structure is fixed by matching to LO ChPT

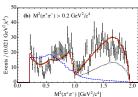
Y.H. Chen et al., PRD95(2017)034022

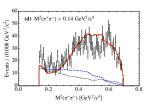
RESULTS





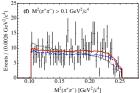






We fit 3 parameters $(c_1, c_2 \text{ (ChPT)}, N)$ to the 2D Dalitzplot

- \blacksquare $Z_b s$ only
- + KT integral
- + polynomial
- + D-wave



Good description small # of para. syst. deviations

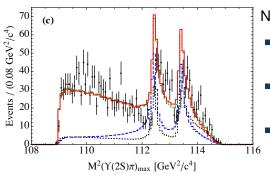
JÜLICH Forschungszentrum

SUMMARY/OUTLOOK

A consistent inclusion of crossed channel effects is possible!

We use input from $\pi\pi - K\bar{K}$ scattering

→ The total number of parameters is small



Next steps:

- Use improved Z_b description (with OPE)
- Perform combined fits of all channels
- Study also ↑(4S) and ↑(3S) decays

This will allow for a high accuracy extraction of the Z_b pole parameters and reliable prediction for the spin partner states