000891450 001__ 891450
000891450 005__ 20210623133456.0
000891450 0247_ $$2Handle$$a2128/27507
000891450 037__ $$aFZJ-2021-01532
000891450 041__ $$aEnglish
000891450 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000891450 1112_ $$aUL Virtual Colloquium$$wUSA
000891450 245__ $$aThe hot spots conjecture can be false: Some numerical examples using boundary integral equations$$f2021-03-25 - 
000891450 260__ $$c2021
000891450 3367_ $$033$$2EndNote$$aConference Paper
000891450 3367_ $$2DataCite$$aOther
000891450 3367_ $$2BibTeX$$aINPROCEEDINGS
000891450 3367_ $$2ORCID$$aLECTURE_SPEECH
000891450 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1616754976_22825$$xInvited
000891450 3367_ $$2DINI$$aOther
000891450 502__ $$cUniversity of Lafayette
000891450 520__ $$aThe hot spots conjecture is only known to be true for special geometries. It can be shown numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.
000891450 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891450 8564_ $$uhttps://juser.fz-juelich.de/record/891450/files/lafayette2021.pdf$$yOpenAccess
000891450 909CO $$ooai:juser.fz-juelich.de:891450$$pdriver$$pVDB$$popen_access$$popenaire
000891450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000891450 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891450 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891450 9141_ $$y2021
000891450 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891450 920__ $$lno
000891450 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891450 980__ $$atalk
000891450 980__ $$aVDB
000891450 980__ $$aUNRESTRICTED
000891450 980__ $$aI:(DE-Juel1)JSC-20090406
000891450 9801_ $$aFullTexts