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THE HOT SPOTS CONJECTURE CAN BE FALSE
Some numerical examples using boundary integral equations
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INTRODUCTION
Problem setup

Consider
flat piece of metal
which is insulated
heat within piece diffuses over time
(almost arbitrary) initial heat distribution is given

Mathematically
D ⊂ R2 (bounded planar domain)
homogeneous Neumann boundary condition
(HNBC) ∂νu = 0 on Lipschitz boundary Γ

heat equation ∂tu = ∆u
u(x ,0) = f (x), x ∈ D

D

E = R2\D

Γ
ν
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INTRODUCTION
Problem setup

What happens if t is large?
Consider smallest non-trivial eigenvalue of negative Laplacian in D with
HNBC.
∆u + κ2u = 0 in D with ∂νu = 0 on Γ (λ = κ2)
Eigenvalues are discrete

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . .

If λ1 < λ2 and 〈u(· ,0),u1〉 6= 0, then

u(x , t) = C + e−λ1t 〈u(· ,0),u1〉u1(x) + lower terms .
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INTRODUCTION
Numerical solution of heat equation ∂tu = τ∆u∂tu = τ∆u∂tu = τ∆u, τ = 1/10τ = 1/10τ = 1/10
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(a) Solution at t1 = 1/200
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(c) Solution at t3 = 1/2
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(d) Solution at t4 = 2

Figure: Initial condition with standard normal random numbers and HNBC using ETD
(h = 1/100 and k = 1/100).

E.O. Asante-Asamani, A. Kleefeld, & B.A. Wade, A second-order exponential time differencing scheme for non-linear

reaction-diffusion systems with dimensional splitting, Journal of Computational Physics 415, 109490 (2020).
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INTRODUCTION
Hot spots conjecture (HSC)

Hottest and coldest spot will appear on Γ when waiting for a long time.
HSC by Jeffrey Rauch (1974): For each eigenfunction u1(x) corresponding to
λ1 which is not identically zero, we have

inf
x∈Γ

u1(x) < u1(y) < sup
x∈Γ

u1(x) ∀ y ∈ D .

J. Rauch Lecture #1. Five problems: An introduction to the qualitative theory of partial differential equations, in Partial

differential equations and related topics (ed. J.A. Goldstein) 446, 355–369, Lecture Notes in Mathematics, Springer (1974).
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INTRODUCTION
Hot spots conjecture (HSC)

Conjecture is true for parallelepipeds, balls, rectangles, cylinders, obtuse
triangles, some convex and non-convex domains with symmetry, wedges, lip
domains, convex domains with two axis of symmetry, convex C1,α domains
(0 < α < 1) with one axis of symmetry, a certain class of planar convex
domains, sub-equilateral isosceles triangles, certain class of acute triangles,
Euclidean triangles.

HSC is open for arbitrary convex domains.
As well as for arbitrary non-convex domains.
No numerical results are available to show failure of HSC.

Can we find easy to construct domains where HSC fails?
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INTRODUCTION
Ingredients

Method to find smallest non-trivial Neumann eigenvalue and corresponding
eigenfunction for arbitrary domains.

⇒ Boundary integral equations and its discretization.

Non-linear eigenvalue solver.

⇒ Complex analysis and integral equations.

Optimization routines (standard).
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NUMERICAL SOLUTION
Boundary integral equation

Green’s representation theorem

u(x) =

∫
Γ

∂ν(y)u(y)·Φκ(x , y)− u(y)· ∂ν(y)Φκ(x , y) ds(y) , x ∈ D

with Φκ(x , y) = iH(1)
0 (k‖x − y‖)/4, x 6= y .

Using ∂νu = 0 on Γ, yields

u(x) = −DLκu(x) , x ∈ D (1)

with acoustic double layer potential and density ψ

DLκψ(x) =

∫
Γ

ψ(y)· ∂ν(y)Φκ(x , y) ds(y) , x ∈ D .
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NUMERICAL SOLUTION
Boundary integral equation

Letting x ∈ D approach Γ and using jump relation of DLκ, gives

u(x) = −{Dκu(x)− (1− Ω(x)) u(x)} , x ∈ Γ

with double layer operator

Dκψ(x) =

∫
Γ

ψ(y)· ∂ν(y)Φκ(x , y) ds(y) , x ∈ Γ .

Ω(x) = −D0 1 (x) interior solid angle (½ a.e. for Lipschitz domains).
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NUMERICAL SOLUTION
Boundary integral equation

Can be written as
Ω·u + Dκu = 0 on Γ .

Abstractly as non-linear eigenvalue problem M(κ)u = 0 with

M(κ) = Ω· I + K(κ) .

K(κ) is compact operator from H−½(Γ) to H½(Γ).
M(κ) Fredholm of index zero for κ ∈ C\R≤0.
Therefore, theory of eigenvalue problems for holomorphic Fredholm
operator-valued functions applies.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

∆1∆2

∆3 ∆4

v2

v8v6

v4

v1

v7

v5

v3

π
4

0

π
2

1 Subdivide boundary in nf pieces.
2 Define discretization points.
3 Approximate boundary pieces.
4 Discretize unknown function on each piece.
5 Require residual to be zero at nc = 3·nf ‘collocation points’.
6 Leads to non-linear eigenvalue problem M(κ)~u = ~0 with M(κ) ∈ Cnc×nc .
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

Consider

λψ(x) +

∫
Γ

ψ(y)∂ν(y)Φκ(x , y) ds(y) = h(x) , x ∈ Γ .

Parameter λ 6= 0 and h are given.
Then

λψ(x) +

nf∑
j=1

∫
∆j

ψ(y)∂ν(y)Φκ(x , y) ds(y) = h(x) , x ∈ Γ .
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

For each j there exists a bijective map mj : σ = [0,1] 7→ ∆j .
Then,

λψ(x) +

nf∑
j=1

∫
σ

ψ(mj(s))∂ν(mj (s))Φκ(x ,mj(s))J(s) ds(s) = h(x) , x ∈ Γ .

Jacobian given by J(s) = ‖∂smj(s)‖.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

We approximate each mj(s) by a quadratic interpolation polynomial

mj(s) ≈ m̃j(s) =
3∑

i=1

v(i+2(j−1)+1)mod (2nf )Li(s) .

Lagrange basis functions for the quadratic interpolation polynomials are

L1(s) = t · (1− 2s) , L2(s) = 4s· t , and L3(s) = s· (2s − 1)

with t = 1− s.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

‘Collocation nodes’ ṽj,k are given by ṽj,k = m̃j(qk ) for j = 1, . . . ,nf and for
k = 1, 2, 3 where q1 = α, q2 = ½, and q3 = 1− α with 0 < α < ½ a given and
fixed constant.
Ensures that collocation nodes are always lying within a piece of the
boundary and at those points the interior solid angle is ½.
Specific choice of α can improve the overall convergence rate.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

Unknown function ψ(m̃j(s)) is now approximated on the j-th piece by a
quadratic interpolation polynomial of the form

3∑
k=1

ψ(m̃j(qk ))L̃k (s) =
3∑

k=1

ψ(ṽj,k )L̃k (s) .

Here, L̃k (s) are the Lagrange basis functions

L̃1(s) =
t − α

1− 2α
1− 2s
1− 2α

, L̃2(s) = 4
s − α

1− 2α
t − α

1− 2α
, L̃3(s) =

s − α
1− 2α

2s − 1
1− 2α

with t = 1− s and 0 < α < ½.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

We obtain

λψ(x)

+

nf∑
j=1

3∑
k=1

∫
σ

∂ν(m̃j (s))Φκ(x , m̃j(s))‖∂sm̃j(s)‖L̃k (s) ds(s)ψ(ṽj,k )− h(x) = r(x)

with r(x) the residue which is due to the various approximations.
We set r(ṽi,`) = 0. Boundary element collocation method
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

In our case λ = ½.
We obtain the linear system of size 3nf × 3nf

1
2
ψ(ṽi,`) +

nf∑
j=1

3∑
k=1

ai,`,j,kψ(ṽj,k ) = h(ṽj,k )

with the resulting integrals

ai,`,j,k =

∫
σ

∂ν(m̃j (s))Φκ(ṽi,`, m̃j(s))‖∂sm̃j(s)‖L̃k (s) ds(s) .

Approximate them by adaptive Gauss-Kronrod quadrature.

Can be written abstractly as M(κ)~ψ = ~h.
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NUMERICAL SOLUTION
Boundary integral equation and its approximation

In our case
M(κ)~u = ~0 .

After we obtain κ and ~u on the boundary, we insert this into (1) to compute
the potential inside the domain at any point we want.
Discretization done as explained previously yields

u(x) = −DLκ[u](x) ≈ −
nf∑

j=1

3∑
k=1

âj,ku(ṽj,k )

with

âj,k =

∫
σ

∂ν(m̃j (s))Φκ(x , m̃j(s))‖∂sm̃j(s)‖L̃k (s) ds(s)

for an arbitrary point x ∈ D.
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NUMERICAL SOLUTION
Solving the non-linear eigenvalue problem

Consider non-linear eigenvalue problem

M(κ)~u = ~0 , ~u ∈ Cnc , ~u 6= 0 , κ ∈ D ⊂ C , γ = ∂D .

Large scale problem n(γ)� nc (n(γ) is number of eigenvalues including
multiplicities inside γ).
Problem can be reduced to linear eigenvalue problem of dimension n(γ)
(Keldysh’s theorem).
One has to use complex-valued contour integrals.

W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra and its Applications 436,

3839–3863 (2012).
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NUMERICAL SOLUTION
Solving the non-linear eigenvalue problem

Specify 2π-periodic contour γ of class C1 within the complex plane.
Need a contour that is enclosing a part of the real line where the smallest
non-zero eigenvalue is expected.
Usually use a circle with radius R and center (µ,0).
In this case, we have ϕ(t) = µ + R cos(t) + iR sin(t) which satisfies ϕ ∈ C∞.
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NUMERICAL SOLUTION
Solving the non-linear eigenvalue problem

Approximate

A0 =
1

2πi

∫
γ

M−1(κ) ds(κ) ≈ 1
iN

N−1∑
j=0

M−1(ϕ(tj))ϕ′(tj) = A0,N ,

A1 =
1

2πi

∫
γ

κM−1(κ) ds(κ) ≈ 1
iN

N−1∑
j=0

ϕ(tj)M−1(ϕ(tj))ϕ′(tj) = A1,N .

Parameter N is given and equidistant nodes are tj = 2πj/N, j = 0, . . . ,N.
Note that choice N = 24 is sufficient due to exponential convergence rate.
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NUMERICAL SOLUTION
Solving the non-linear eigenvalue problem

Compute an SVD of A0,N = V ΣWH with V ∈ Cnc×nc , Σ ∈ Cnc×nc , and
W ∈ Cnc×nc .
Perform a rank test for the matrix Σ = diag(σ1, σ2, . . . , σnc ) for a given
tolerance ε = tolrank (usually ε = 10−4).
That is, find n(γ) such that σ1 ≥ . . . ≥ σn(γ) > ε > σn(γ)+1 ≥ . . . ≥ σnc .
Define V0 = (Vij)1≤i≤nc ,1≤j≤n(γ), Σ0 = (Σij)1≤i≤n(γ),1≤j≤n(γ), and
W0 = (Wij)1≤i≤nc ,1≤j≤n(γ)) and compute the n(γ) eigenvalues κi and
eigenvectors ~si of the matrix

B = VH
0 A1,NW0Σ−1

0 ∈ Cn(γ)×n(γ) .

The i-th non-linear eigenvector ~ui is given by V0~si .
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NUMERICAL RESULTS
Estimated order of convergence (EOC)

nf nc abs. error E (1)
nf

EOC(1) abs. error E (2)
nf

EOC(2) abs. error E (3)
nf

EOC(3)

5 15 5.8503−3 1.2817−2 1.6335−2
10 30 4.7818−4 3.6129 1.1543−3 3.4729 1.3081−3 3.6424
20 60 4.5775−5 3.3849 1.2187−4 3.2437 1.3133−4 3.3162
40 120 5.0168−6 3.1897 1.4173−5 3.1041 1.5147−5 3.1161
80 240 5.9173−7 3.0838 1.7199−6 3.0428 1.8416−6 3.0401

160 480 7.2096−8 3.0369 2.1229−7 3.0182 2.2788−7 3.0146
320 960 8.9069−9 3.0169 2.6386−8 3.0082 2.8373−8 3.0057
640 1920 1.1072−9 3.0080 3.2895−9 3.0038 3.5406−9 3.0024

1280 3840 1.3803−10 3.0039 4.1066−10 3.0018 4.4225−10 3.0011

Table: Absolute error and EOC of first three non-trivial interior Neumann eigenvalue for a
unit circle.
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NUMERICAL RESULTS
Convex domains
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Figure: u1 for a circle, an ellipse, and a deformed ellipse.
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NUMERICAL RESULTS
Non-convex domains
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Figure: u1 for deformed ellipse, peanut, and apple.
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NUMERICAL RESULTS
Domains with one hole

What about objects with one hole?
HSC is true for an annuli (exact solution available) and other domains (my
numerical results)
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(c) Domain with hole

Figure: u1 for an annulus and two other domains with a hole.
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NUMERICAL RESULTS
Domains with one hole

Krzysztof Burdzy & Wendelin Werner (1999) showed that there is a domain
with one hole such that HSC fails.
“...domains with bizarre shape...”
A recent domain with one hole given by Burdzy (2005) is a theoretical one,
too (epsilon domain, very thin).
Proof includes stochastic arguments.

Issue: No numerical results given (cannot be given for this domain).

K. Burdzy, The hot spots problem in planar domains with one hole, Duke Mathematical Journal 129, 481–502 (2005).

K. Burdzy & W. Werner, A counterexample to the “hot spots” conjecture, Annals of Mathematics 149, 309–317 (1999).
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NUMERICAL RESULTS
Domains with one hole

Some counter-examples
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(b) Variant of ‘teether’
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Figure: u1 for the teether, its variant, and the brick.

A. Kleefeld, The hot spots conjecture can be false: Some numerical examples, arXiv:2101.01210.
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NUMERICAL RESULTS
Domains with one hole

Use optimization routine (Nelder-Mead) to find max (min) location in D.
Max (min) on Γ known, too.
Define ratio of max (min) in D and max (min) on Γ as ℵmax (ℵmin).

D location max location min ℵmax ℵmin

T (−3.805−8,6.877−1)> (3.299−8,−6.877−1)> 1 + 1.221−4 1 + 1.221−4

V (−1.968−7,6.877−1)> ————— 1 + 1.438−3 —————

Table: Location of max and min inside domain along with ratios ℵmax > 1 and/or ℵmin > 1
for teether T and its variant V that fail HSC.
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NUMERICAL RESULTS
Domains with more than one hole

Some counter-examples

-1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

(a) Domain with two holes

-1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

(b) Domain with three holes
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(c) Domain with four holes

Figure: u1 for teether with more than one hole.
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SUMMARY AND OUTLOOK

Introduced HSC.
Showed how to find highly accurate first non-trivial Neumann eigenvalue and
eigenfunction via boundary integral equations.
Illustrated numerically that HSC can be false for domains with hole(s).

Can you find easy to construct domains that fail HSC, too?
Can you prove that HSC is true for simply-connected convex/non-convex
domains?

Member of the Helmholtz Association UL Virtual Colloquium | March 25, 2021 Andreas Kleefeld



REFERENCES
Partial list

E.O. Asante-Asamani, A. Kleefeld, & B.A. Wade, A second-order exponential time differencing scheme for non-linear
reaction-diffusion systems with dimensional splitting, Journal of Computational Physics 415, 109490 (2020).

W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra and its Applications 436,
3839–3863 (2012).

K. Burdzy, The hot spots problem in planar domains with one hole, Duke Mathematical Journal 129, 481–502 (2005).

K. Burdzy & W. Werner, A counterexample to the “hot spots” conjecture, Annals of Mathematics 149, 309–317 (1999).

A. Kleefeld, Numerical methods for acoustic and electromagnetic scattering: Transmission boundary-value problems,
interior transmission eigenvalues, and the factorization method, Habilitation Thesis, BTU Cottbus (2015).

A. Kleefeld, The hot spots conjecture can be false: Some numerical examples, arXiv:2101.01210.

A. Kleefeld & T.-C. Lin, Boundary element collocation method for solving the exterior Neumann problem for
Helmholtz’s equation in three dimensions, Electronic Transactions on Numerical Analysis 39, 113–143 (2012).

J. Rauch Lecture #1. Five problems: An introduction to the qualitative theory of partial differential equations, in Partial

differential equations and related topics (ed. J.A. Goldstein) 446, 355–369, Lecture Notes in Mathematics, Springer

(1974).

Member of the Helmholtz Association UL Virtual Colloquium | March 25, 2021 Andreas Kleefeld


