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THE HOT SPOTS CONJECTURE CAN BE FALSE

Some numerical examples using boundary integral equations
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INTRODUCTION
Problem setup
Consider
= flat piece of metal
= which is insulated
= heat within piece diffuses over time
= (almost arbitrary) initial heat distribution is given

Mathematically
= D C R? (bounded planar domain)

= homogeneous Neumann boundary condition
(HNBC) 0,u = 0 on Lipschitz boundary I

= heat equation 0;u = Au
m y(x,0)=1f(x),xeD
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INTRODUCTION

Problem setup

= What happens if t is large?

= Consider smallest non-trivial eigenvalue of negative Laplacian in D with
HNBC.

= AU+ K2u=0in Dwith O,u=00nT (\ = x?)
= Eigenvalues are discrete

0:)\0</\1 <D< \< ...
= |f Ay < Ay and (u(-,0),uy) # 0, then
u(x,t) = C+e M (u(-,0), ur) uy(x) + lower terms..
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INTRODUCTION

Numerical solution of heat equation 9:;u = TAu, 7 =1/10

@

(a) Solutionatt; =1/200 (b) Solutionatt, =1/10  (C) Solution at t3 = 1/2 (d) Solutionat t, =2
Figure: Initial condition with standard normal random numbers and HNBC using ETD
(h=1/100 and kK = 1/100).

E.O. Asante-Asamani, A. Kleefeld, & B.A. Wade, A second-order exponential time differencing scheme for non-linear

reaction-diffusion systems with dimensional splitting, Journal of Computational Physics 415, 109490 (2020).
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INTRODUCTION

Hot spots conjecture (HSC)

= Hottest and coldest spot will appear on I when waiting for a long time.

= HSC by Jeffrey Rauch (1974): For each eigenfunction uy(x) corresponding to
A1 which is not identically zero, we have

inf uy(x) < ur(y) < sup us(x) VyeD.
xelr xel

J. Rauch Lecture #1. Five problems: An introduction to the qualitative theory of partial differential equations, in Partial

differential equations and related topics (ed. J.A. Goldstein) 446, 355-369, Lecture Notes in Mathematics, Springer (1974).
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INTRODUCTION

Hot spots conjecture (HSC)

= Conjecture is true for parallelepipeds, balls, rectangles, cylinders, obtuse
triangles, some convex and non-convex domains with symmetry, wedges, lip
domains, convex domains with two axis of symmetry, convex C'* domains
(0 < a < 1) with one axis of symmetry, a certain class of planar convex
domains, sub-equilateral isosceles triangles, certain class of acute triangles,
Euclidean triangles.

HSC is open for arbitrary convex domains.
As well as for arbitrary non-convex domains.
No numerical results are available to show failure of HSC.

Can we find easy to construct domains where HSC fails?
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INTRODUCTION

Ingredients

= Method to find smallest non-trivial Neumann eigenvalue and corresponding
eigenfunction for arbitrary domains.

= Boundary integral equations and its discretization.
= Non-linear eigenvalue solver.

= Complex analysis and integral equations.
= Optimization routines (standard).
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NUMERICAL SOLUTION

Boundary integral equation

= Green’s representation theorem

/mw (X, ) — U(Y)- Dy ®u(X. ¥) dS(Y) .

with ®,.(x, y) = iHg ) (k|[x = yII)/4, x # y.
= Using 0,u=0onT, yields

u(x)=-DL,u(x), xeD

with acoustic double layer potential and density ¢

DL,(x /w ¥) 0y ®u(x,y)ds(y), xeD.
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NUMERICAL SOLUTION

Boundary integral equation

m Letting x € D approach I' and using jump relation of DL,, gives
u(x) = —{Deu(x) = (1 =Qx))u(x)} , xeTl

with double layer operator

/w O ®Pu(x,y)ds(y), xeTl.

= Q(x) = —Dg 1 (x) interior solid angle (2 a.e. for Lipschitz domains).
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NUMERICAL SOLUTION

Boundary integral equation

= Can be written as
Qu+D.,u=0 on'l.

= Abstractly as non-linear eigenvalue problem M(x)u = 0 with
M(k) = Q-1+ K(k).

= K(k) is compact operator from H~"%(I") to H"*(T).
= M(x) Fredholm of index zero for k € C\R<.

= Therefore, theory of eigenvalue problems for holomorphic Fredholm
operator-valued functions applies.
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

V3
V4 Vo
JAVS JAN)
Vs Vi
Ve Vs
Az JAV: 7 0
Subdivide boundary in ns pieces.
Define discretization points.
Approximate boundary pieces.
Discretize unknown function on each piece.

Require residual to be zero at n, = 3- n¢ ‘coIIocatioqn points’.
@A Leads to non-linear eigenvalue problem M(x)d = 0 with M(x) € Ce*",
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= Consider
0+ [60)00ulx Y ds(y) = ). xeT

= Parameter A\ # 0 and h are given.
= Then

A0+ [ 0@ ) dsly) = hx). xeT
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= For each j there exists a bijective map m; : 0 = [0, 1] — A;.
= Then,

g

MO0+ 3 [ 08 0uimien®.(x. m($)(s) ds(s) = hx). X< T
j=1

= Jacobian given by J(s) = ||0sm;(s)]|.

JULICH
SUPERCOMPUTING
CENTRE

' 4 / U
Member of the Helmholtz Association UL Virtual Colloquium | March 25, 2021 Andreas Kleefeld J U L I c H

Forschungszentrum




NUMERICAL SOLUTION

Boundary integral equation and its approximation

= We approximate each m;(s) by a quadratic interpolation polynomial

3

my(S) ~ Mi(S) =Y V(ix2(-1)+1) mod (2n) Li(S) -
i=1

= Lagrange basis functions for the quadratic interpolation polynomials are
Li(s)=t(1—-2s), Lys)=4st, and L3(s)=s(25—1)

witht=1-s.
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= ‘Collocation nodes’ v are given by v;x = m;(qx) forj=1,..., ns and for
k=1,2,3where gy =a, g =",and g3 = 1 — a with 0 < a < 2 a given and
fixed constant.

= Ensures that collocation nodes are always lying within a piece of the
boundary and at those points the interior solid angle is a.

= Specific choice of o can improve the overall convergence rate.
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= Unknown function ¢(mj(s)) is now approximated on the j-th piece by a
quadratic interpolation polynomial of the form

3

S (@) Li(s) = > v (Viu)L(s).

k=1 k=1
= Here, Zk(s) are the Lagrange basis functions

t—a 1-2s8 -~ S—a t—a ~ S—a 2s—1

_ L.(s) =4 L.(s) =
1201 _2a ) =457 5, B =175, "2,

Ly(s)

witht=1—-sand 0 < a < 2.
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= We obtain
A(x)
N 3 "
+ 3y / Doty (5P, Y(9)) 10577 (8) 1 L(8) ()i (Vi) — h(X) = r(x)
j=1 k=177

with r(x) the residue which is due to the various approximations.
= We set r(Vv;,) = 0. Boundary element collocation method
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= In our case \ = 2.
= We obtain the linear system of size 3n; x 3n¢

1 S _ -
50(Vie) + DD @ik (Vik) = h(Vi)

j=1 k=1

with the resulting integrals

itk = [ O ®n(Viss (9))|0:7(9)] L() ds(s).

= Approximate them by adaptive Gauss-Kronrod quadrature.
= Can be written abstractly as M(x)¢ = h.
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NUMERICAL SOLUTION

Boundary integral equation and its approximation

= In our case ~
M(x)d =0.

After we obtain « and U on the boundary, we insert this into (1) to compute
the potential inside the domain at any point we want.
= Discretization done as explained previously yields

u(x) = —DL,[u](x ZZa,ku Vi k)

j=1 k=1
with
By = [ i@, m(5))]06(S) Ll ) ds(s)
for an arbitrary point x € D.
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NUMERICAL SOLUTION

Solving the non-linear eigenvalue problem

= Consider non-linear eigenvalue problem
M(k)i=0, GeC™, i#0, keDcCC, ~=20D.

= Large scale problem n(v) < n. (n(v) is number of eigenvalues including
multiplicities inside 7).

= Problem can be reduced to linear eigenvalue problem of dimension n(~)
(Keldysh'’s theorem).

= One has to use complex-valued contour integrals.

W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra and its Applications 436,
3839-3863 (2012).
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NUMERICAL SOLUTION

Solving the non-linear eigenvalue problem

Specify 2r-periodic contour v of class C' within the complex plane.

Need a contour that is enclosing a part of the real line where the smallest
non-zero eigenvalue is expected.

Usually use a circle with radius R and center (p, 0).
In this case, we have ¢(t) = i+ Rcos(t) + iR sin(t) which satisfies ¢ € C>.
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NUMERICAL SOLUTION

Solving the non-linear eigenvalue problem

= Approximate

Ao = o | W) dst) %,I:OM‘%@(@)M(@-) = Aon.
A= g [ M as() ~ ij M (o8 (8) = Ar

= Parameter N is given and equidistant nodes are t; = 27j/N, j=0,...,N.
= Note that choice N = 24 is sufficient due to exponential convergence rate.
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NUMERICAL SOLUTION

Solving the non-linear eigenvalue problem

= Compute an SVD of Ayy = VEWH with V € C™*", ¥ € C"*", and
W e Cnexne,

= Perform a rank test for the matrix ¥ = diag(o1, 02,...,0,,) for a given
tolerance e = tol.ank (usually e = 1074).

= Thatis, find n(y) such that oy > ... > 0ny) > € > Op(y)41 = ... > 0p,.

= Define Vo = (Vjj)1<i<n.1<j<n(+), Lo = (Xj)1<i<n(y),1<j<n(y)> @and
Wo = (Wj)1<i<n.,1<j<n(+)) @nd compute the n(y) eigenvalues «; and
eigenvectors S; of the matrix

B = VA NWLE, " € CrOxn()

= The i-th non-linear eigenvector &, is given by V;S;.

JULICH
SUPERCOMPUTING
CENTRE

' 4 / U
Member of the Helmholtz Association UL Virtual Colloquium | March 25, 2021 Andreas Kleefeld J U L I c H

Forschungszentrum




NUMERICAL RESULTS

Estimated order of convergence (EOC)

ny ne abs. error E,(,:) EOC()  abs. error E,(,f) EOC®  abs. error E,(,?) EOC®
5 15 5.8503_3 1.2817_» 1.6335_»

10 30 4.7818_4 3.6129 1.1543_3 3.4729 1.3081_3 3.6424

20 60 4.5775_5 3.3849 1.2187_4 3.2437 1.3133_4 3.3162

40 120 5.0168_¢ 3.1897 1.4173_5 3.1041 1.5147_5 3.1161

80 240 5.9173_7 3.0838 1.7199_5 3.0428 1.8416_g 3.0401
160 480 7.2096_g 3.0369 2.1229_; 3.0182 2.2788_7 3.0146
320 960 8.9069_9 3.0169 2.6386_g 3.0082 2.8373_g 3.0057
640 1920 1.1072_¢ 3.0080 3.2895_9 3.0038 3.5406_9 3.0024

1280 3840 1.3803_19 3.0039 4.1066_19 3.0018 4.4225_49 3.0011

Table: Absolute error and EOC of first three non-trivial interior Neumann eigenvalue for a
unit circle.
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NUMERICAL RESULTS

Convex domains
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(a) Circle (b) Ellipse (c) Deformed ellipse
Figure: uy for a circle, an ellipse, and a deformed ellipse.
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NUMERICAL RESULTS

Non-convex domains
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(a) Deformed ellipse (b) Peanut (c) Apple
Figure: wuy for deformed ellipse, peanut, and apple.
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NUMERICAL RESULTS

Domains with one hole

= What about objects with one hole?
= HSC is true for an annuli (exact solution available) and other domains (my

numerical results)

0.06 1 0.03 1 01
0.04 -’/ 0.02 gl, 0.08
0.5 0.01 0.5 //// 0.0
2 e <
0.02 / Q // 0.04
\//‘/’ ’ § é 0.02
0 > 0 = _— Q01 > 0 = é
§._§\ -0.02 = T § oooz
0.02 £ i e
O - -
-0.04 . 008
r 0.06 1 -0.05 -1 01
2 15 -1 05 0 05 1 15 2 El 0.5 0 05 1 El 05 [} 05 1 )
(a) Annulus (b) Domain with hole (c) Domain with hole
Figure: uy for an annulus and two other domains with a hole.
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NUMERICAL RESULTS

Domains with one hole

m Krzysztof Burdzy & Wendelin Werner (1999) showed that there is a domain
with one hole such that HSC fails.

= “...domains with bizarre shape..”

= A recent domain with one hole given by Burdzy (2005) is a theoretical one,
too (epsilon domain, very thin).

= Proof includes stochastic arguments.

= [ssue: No numerical results given (cannot be given for this domain).

K. Burdzy, The hot spots problem in planar domains with one hole, Duke Mathematical Journal 129, 481-502 (2005).
K. Burdzy & W. Werner, A counterexample to the “hot spots” conjecture, Annals of Mathematics 149, 309-317 (1999).
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NUMERICAL RESULTS

Domains with one hole

Some counter-examples

0.025
0.01 25 002
0 2 0.015
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0.01
-0.01 1
05 0.005
002 70 0
-0.5 -0.005
-0.03 -1 -0.01
15 0015
-0.04 -2 0,02
2.5
-0.025
-0.05
-1.5 -1 -0.5 [ 0.5 1 15 -1.5 -1 -0.5 [ 0.5 1 15 25-2-15-1-050 05 1 15 2 25
(a) ‘Teether domain (b) Variant of ‘teether’ (c) ‘Brick’ domain
Figure: uy for the teether, its variant, and the brick.
A. Kleefeld, The hot spots conjecture can be false: Some numerical examples, arXiv:2101.01210.
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NUMERICAL RESULTS

Domains with one hole

= Use optimization routine (Nelder-Mead) to find max (min) location in D.
= Max (min) on I' known, too.
= Define ratio of max (min) in D and max (min) on I as Nyax (Rmin)-

D location max location min N max N min
T (-3.8053,6.877_1)" (3.299 4,-6.877_4)7 1+1221 4, 1+1221 4
V (-1.968_7,6.877_1)" e 1+ 1.438_3

Table: Location of max and min inside domain along with ratios R,2x > 1 and/or X, > 1
for teether T and its variant V that fail HSC.
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NUMERICAL RESULTS

Domains with more than one hole

Some counter-examples
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0 0 0
-0.005 -0.005
-0.01 -0.01 -0.005
-0.015 -0.015
-0.01
-0.02 -0.02
-0.025 -0.025
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(a) Domain with two holes (b) Domain with three holes (c) Domain with four holes
Figure: uy for teether with more than one hole.
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SUMMARY AND OUTLOOK

= |ntroduced HSC.

= Showed how to find highly accurate first non-trivial Neumann eigenvalue and
eigenfunction via boundary integral equations.

= |llustrated numerically that HSC can be false for domains with hole(s).

= Can you find easy to construct domains that fail HSC, too?

= Can you prove that HSC is true for simply-connected convex/non-convex
domains?
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