000891473 001__ 891473
000891473 005__ 20240711114038.0
000891473 0247_ $$2doi$$a10.1088/1361-6587/abdd75
000891473 0247_ $$2ISSN$$a0032-1028
000891473 0247_ $$2ISSN$$a0368-3281
000891473 0247_ $$2ISSN$$a0741-3335
000891473 0247_ $$2ISSN$$a1361-6587
000891473 0247_ $$2ISSN$$a1879-2979
000891473 0247_ $$2ISSN$$a2057-7648
000891473 0247_ $$2Handle$$a2128/27569
000891473 0247_ $$2altmetric$$aaltmetric:100687082
000891473 0247_ $$2WOS$$aWOS:000620505300001
000891473 037__ $$aFZJ-2021-01549
000891473 082__ $$a620
000891473 1001_ $$0P:(DE-Juel1)173824$$aChew, Junxian$$b0$$eCorresponding author
000891473 245__ $$aThree-dimensional first principles simulation of a hydrogen discharge
000891473 260__ $$aBristol$$bIOP Publ.$$c2021
000891473 3367_ $$2DRIVER$$aarticle
000891473 3367_ $$2DataCite$$aOutput Types/Journal article
000891473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839658_21106
000891473 3367_ $$2BibTeX$$aARTICLE
000891473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891473 3367_ $$00$$2EndNote$$aJournal Article
000891473 520__ $$aTownsend discharge theory is commonly used to describe and approximate the ionisation fraction growth rate in the very early phase of plasma initiation in tokamak devices via ohmic breakdown. The prediction of the ionisation fraction growth rate is done most commonly with continuum or kinetic models, which in turn boil down to the relation between the first Townsend's coefficient α, pressure p and electric field strength E (namely, α/p and E/p). To date there are few computational models that attempt to simulate the ionisation fraction growth rate via explicit modelling of each ionisation event through electron-neutral collisions. This is largely due to the challenge of addressing the exponential growth of charged particles from ionisation processes, combined with the high computational cost of N-body simulation. In this work, a new fully three-dimensional, first-principles model of a Townsend hydrogen discharge is demonstrated and benchmarked against prior experimental findings. These tests also include comparisons of three separate models for the scattering angle and their impact on the obtained α/p and mean electron drift velocity. It is found that isotropic scattering combined with restricting the freed electron's scattering angle along the incident electron's velocity vector during ionisation events gives the closest agreement of α/p compared to experimental measurements.
000891473 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891473 536__ $$0G:(DE-Juel1)jzam04_20190501$$aKinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)$$cjzam04_20190501$$fKinetic Plasma Simulation with Highly Scalable Particle Codes$$x1
000891473 588__ $$aDataset connected to CrossRef
000891473 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b1$$ufzj
000891473 7001_ $$0P:(DE-Juel1)143606$$aBrömmel, Dirk$$b2$$ufzj
000891473 7001_ $$0P:(DE-Juel1)145890$$aWauters, Tom$$b3
000891473 7001_ $$0P:(DE-HGF)0$$aGribov, Yuri$$b4
000891473 7001_ $$00000-0001-7304-5486$$ade Vries, Peter$$b5
000891473 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/abdd75$$gVol. 63, no. 4, p. 045012 -$$n4$$p045012 -$$tPlasma physics and controlled fusion$$v63$$x1361-6587$$y2021
000891473 8564_ $$uhttps://juser.fz-juelich.de/record/891473/files/Chew_2021_Plasma_Phys._Control._Fusion_63_045012.pdf$$yOpenAccess
000891473 8767_ $$d2021-04-19$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP
000891473 909CO $$ooai:juser.fz-juelich.de:891473$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173824$$aForschungszentrum Jülich$$b0$$kFZJ
000891473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000891473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143606$$aForschungszentrum Jülich$$b2$$kFZJ
000891473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145890$$aForschungszentrum Jülich$$b3$$kFZJ
000891473 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891473 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891473 9141_ $$y2021
000891473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000891473 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891473 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2019$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891473 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000891473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891473 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000891473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891473 920__ $$lyes
000891473 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891473 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000891473 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000891473 9801_ $$aAPC
000891473 9801_ $$aFullTexts
000891473 980__ $$ajournal
000891473 980__ $$aVDB
000891473 980__ $$aI:(DE-Juel1)JSC-20090406
000891473 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891473 980__ $$aI:(DE-82)080012_20140620
000891473 980__ $$aAPC
000891473 980__ $$aUNRESTRICTED
000891473 981__ $$aI:(DE-Juel1)IFN-1-20101013