001     891480
005     20240625095113.0
024 7 _ |a 10.1021/acs.jpcb.0c09805
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 2128/27578
|2 Handle
024 7 _ |a altmetric:97751581
|2 altmetric
024 7 _ |a 33443434
|2 pmid
024 7 _ |a WOS:000614308000010
|2 WOS
037 _ _ |a FZJ-2021-01554
082 _ _ |a 530
100 1 _ |a Korshunova, Ksenia
|0 P:(DE-Juel1)171535
|b 0
245 _ _ |a Ligand Affinities within the Open-Boundary Molecular Mechanics/Coarse-Grained Framework (I): Alchemical Transformations within the Hamiltonian Adaptive Resolution Scheme
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618295871_13404
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Our recently developed Open-Boundary Molecular Mechanics/Coarse Grained (OB-MM/CG) framework predicts ligand poses in important pharmaceutical targets, such as G-protein Coupled Receptors, even when experimental structural information is lacking. The approach, which is based on GROMOS and AMBER force fields, allows for grand-canonical simulations of protein–ligand complexes by using the Hamiltonian Adaptive Resolution Scheme (H-AdResS) for the solvent. Here, we present a key step toward the estimation of ligand binding affinities for their targets within this approach. This is the implementation of the H-AdResS in the GROMACS code. The accuracy of our implementation is established by calculating hydration free energies of several molecules in water by means of alchemical transformations. The deviations of the GROMOS- and AMBER-based H-AdResS results from the reference fully atomistic simulations are smaller than the accuracy of the force field and/or they are in the range of the published results. Importantly, our predictions are in good agreement with experimental data. The current implementation paves the way to the use of the OB-MM/CG framework for the study of large biological systems.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 1
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.0c09805
|g Vol. 125, no. 3, p. 789 - 797
|0 PERI:(DE-600)2006039-7
|n 3
|p 789 - 797
|t The journal of physical chemistry / B
|v 125
|y 2021
|x 1520-5207
856 4 _ |u https://juser.fz-juelich.de/record/891480/files/acs.jpcb.0c09805.pdf
|y Restricted
856 4 _ |y Published on 2021-01-14. Available in OpenAccess from 2022-01-14.
|u https://juser.fz-juelich.de/record/891480/files/10.1021_acs.jpcb.0c09805.pdf
909 C O |o oai:juser.fz-juelich.de:891480
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171535
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145614
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21