000891482 001__ 891482
000891482 005__ 20240708133149.0
000891482 0247_ $$2doi$$a10.1016/j.fusengdes.2021.112460
000891482 0247_ $$2ISSN$$a0920-3796
000891482 0247_ $$2ISSN$$a1873-7196
000891482 0247_ $$2Handle$$a2128/27518
000891482 0247_ $$2WOS$$aWOS:000674482900005
000891482 037__ $$aFZJ-2021-01556
000891482 082__ $$a530
000891482 1001_ $$00000-0001-8949-0402$$aLuís, R.$$b0$$eCorresponding author
000891482 245__ $$aNuclear analysis of the DEMO divertor survey visible high-resolution spectrometer
000891482 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000891482 3367_ $$2DRIVER$$aarticle
000891482 3367_ $$2DataCite$$aOutput Types/Journal article
000891482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617951532_9159
000891482 3367_ $$2BibTeX$$aARTICLE
000891482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891482 3367_ $$00$$2EndNote$$aJournal Article
000891482 520__ $$aSpectroscopic measurements have been recently proposed in DEMO for divertor detachment control. In its current design, the DEMO Divertor Survey Visible High-Resolution Spectrometer is foreseen to perform spectroscopy measurements by integrating three optical subsystems into an equatorial port (EP). Behind the first wall, light travels through a set of metallic mirrors and ducts before it reaches the closure plate of the EP. This paper presents a nuclear analysis performed with the Monte Carlo simulation program MCNP6 for two alternative configurations of the system. The results show that the configuration with 5 mirrors per transmission line is very effective to reduce the neutron streaming through the port. However, it will not be possible, with the current design, to introduce standard electronics along the spectroscopy ducts, as the dose rate limits for non-critical electronic components are exceeded in both configurations. In the plasma-facing mirrors, the heat loads are below 2 mW/cm3, which shows that the strategy of recessing the first mirrors and placing them behind small-diameter openings is effective to decrease the loads in the mirrors. FISPACT simulations for different materials show that material transmutation in the mirrors will be negligible throughout the DEMO reactor lifetime.
000891482 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891482 588__ $$aDataset connected to CrossRef
000891482 7001_ $$00000-0002-3471-8569$$aNietiadi, Y.$$b1
000891482 7001_ $$0P:(DE-Juel1)166322$$aSilva, A.$$b2
000891482 7001_ $$00000-0003-0670-1214$$aGonçalves, B.$$b3
000891482 7001_ $$0P:(DE-HGF)0$$aFranke, T.$$b4
000891482 7001_ $$0P:(DE-Juel1)129967$$aBiel, W.$$b5
000891482 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2021.112460$$gVol. 169, p. 112460 -$$p112460 -$$tFusion engineering and design$$v169$$x0920-3796$$y2021
000891482 8564_ $$uhttps://juser.fz-juelich.de/record/891482/files/postprint_Biel_Nuclear%20Analysis%20of%20the%20DEMO.pdf$$yPublished on 2021-03-23. Available in OpenAccess from 2023-03-23.
000891482 909CO $$ooai:juser.fz-juelich.de:891482$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b5$$kFZJ
000891482 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891482 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891482 9141_ $$y2021
000891482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000891482 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891482 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2019$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891482 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000891482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891482 920__ $$lyes
000891482 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891482 9801_ $$aFullTexts
000891482 980__ $$ajournal
000891482 980__ $$aVDB
000891482 980__ $$aUNRESTRICTED
000891482 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891482 981__ $$aI:(DE-Juel1)IFN-1-20101013