000891527 001__ 891527
000891527 005__ 20240610120658.0
000891527 0247_ $$2doi$$a10.1103/PhysRevLett.126.132001
000891527 0247_ $$2ISSN$$a0031-9007
000891527 0247_ $$2ISSN$$a1079-7114
000891527 0247_ $$2ISSN$$a1092-0145
000891527 0247_ $$2Handle$$a2128/27647
000891527 0247_ $$2altmetric$$aaltmetric:90425996
000891527 0247_ $$2pmid$$a33861129
000891527 0247_ $$2WOS$$aWOS:000652826300004
000891527 037__ $$aFZJ-2021-01580
000891527 082__ $$a530
000891527 1001_ $$00000-0001-6392-7143$$aDong, Xiang-Kun$$b0$$eCorresponding author
000891527 245__ $$aCoupled-Channel Interpretation of the LHCb Double- J / ψ Spectrum and Hints of a New State Near the J / ψ J / ψ Threshold
000891527 260__ $$aCollege Park, Md.$$bAPS$$c2021
000891527 3367_ $$2DRIVER$$aarticle
000891527 3367_ $$2DataCite$$aOutput Types/Journal article
000891527 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618920803_19165
000891527 3367_ $$2BibTeX$$aARTICLE
000891527 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891527 3367_ $$00$$2EndNote$$aJournal Article
000891527 520__ $$aRecently, the LHCb Collaboration reported pronounced structures in the invariant mass spectrum of J/ψ pairs produced in proton-proton collisions at the Large Hadron Collider. In this Letter, we argue that the data can be very well described within two variants of a coupled-channel approach employing T matrices consistent with unitarity: (i) with just two channels, J/ψJ/ψ and ψ(2S)J/ψ, as long as energy-dependent interactions in these channels are allowed, or (ii) with three channels J/ψJ/ψ, ψ(2S)J/ψ, and ψ(3770)J/ψ with just constant contact interactions. Both formulations hint at the existence of a near-threshold state in the J/ψJ/ψ system with the quantum numbers JPC=0++ or 2++, which we refer to as X(6200). We suggest experimental tests to check the existence of this state and discuss what additional channels need to be studied experimentally to allow for distinctive tests between the two mechanisms proposed. If the molecular nature of X(6200), as hinted by the three-channel approach, is confirmed, many other double-quarkonium states should exist driven by the same binding mechanism. In particular, there should be an ηcηc molecule with a similar binding energy.
000891527 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational-  Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891527 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000891527 588__ $$aDataset connected to CrossRef
000891527 7001_ $$0P:(DE-HGF)0$$aBaru, Vadim$$b1
000891527 7001_ $$00000-0002-2919-2064$$aGuo, Feng-Kun$$b2$$eCorresponding author
000891527 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b3
000891527 7001_ $$0P:(DE-Juel1)131268$$aNefediev, Alexey$$b4
000891527 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.126.132001$$gVol. 126, no. 13, p. 132001$$n13$$p132001$$tPhysical review letters$$v126$$x1079-7114$$y2021
000891527 8564_ $$uhttps://juser.fz-juelich.de/record/891527/files/PhysRevLett.126.132001.pdf$$yOpenAccess
000891527 909CO $$ooai:juser.fz-juelich.de:891527$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b3$$kFZJ
000891527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131268$$aForschungszentrum Jülich$$b4$$kFZJ
000891527 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891527 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891527 9141_ $$y2021
000891527 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000891527 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891527 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891527 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000891527 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891527 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000891527 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000891527 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000891527 9801_ $$aFullTexts
000891527 980__ $$ajournal
000891527 980__ $$aVDB
000891527 980__ $$aUNRESTRICTED
000891527 980__ $$aI:(DE-Juel1)IAS-4-20090406
000891527 980__ $$aI:(DE-Juel1)IKP-3-20111104
000891527 981__ $$aI:(DE-Juel1)IAS-4-20090406