001     891527
005     20240610120658.0
024 7 _ |a 10.1103/PhysRevLett.126.132001
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/27647
|2 Handle
024 7 _ |a altmetric:90425996
|2 altmetric
024 7 _ |a 33861129
|2 pmid
024 7 _ |a WOS:000652826300004
|2 WOS
037 _ _ |a FZJ-2021-01580
082 _ _ |a 530
100 1 _ |a Dong, Xiang-Kun
|0 0000-0001-6392-7143
|b 0
|e Corresponding author
245 _ _ |a Coupled-Channel Interpretation of the LHCb Double- J / ψ Spectrum and Hints of a New State Near the J / ψ J / ψ Threshold
260 _ _ |a College Park, Md.
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618920803_19165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, the LHCb Collaboration reported pronounced structures in the invariant mass spectrum of J/ψ pairs produced in proton-proton collisions at the Large Hadron Collider. In this Letter, we argue that the data can be very well described within two variants of a coupled-channel approach employing T matrices consistent with unitarity: (i) with just two channels, J/ψJ/ψ and ψ(2S)J/ψ, as long as energy-dependent interactions in these channels are allowed, or (ii) with three channels J/ψJ/ψ, ψ(2S)J/ψ, and ψ(3770)J/ψ with just constant contact interactions. Both formulations hint at the existence of a near-threshold state in the J/ψJ/ψ system with the quantum numbers JPC=0++ or 2++, which we refer to as X(6200). We suggest experimental tests to check the existence of this state and discuss what additional channels need to be studied experimentally to allow for distinctive tests between the two mechanisms proposed. If the molecular nature of X(6200), as hinted by the three-channel approach, is confirmed, many other double-quarkonium states should exist driven by the same binding mechanism. In particular, there should be an ηcηc molecule with a similar binding energy.
536 _ _ |a 511 - Enabling Computational- Data-Intensive Science and Engineering (POF4-511)
|0 G:(DE-HGF)POF4-511
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baru, Vadim
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Guo, Feng-Kun
|0 0000-0002-2919-2064
|b 2
|e Corresponding author
700 1 _ |a Hanhart, Christoph
|0 P:(DE-Juel1)131182
|b 3
700 1 _ |a Nefediev, Alexey
|0 P:(DE-Juel1)131268
|b 4
773 _ _ |a 10.1103/PhysRevLett.126.132001
|g Vol. 126, no. 13, p. 132001
|0 PERI:(DE-600)1472655-5
|n 13
|p 132001
|t Physical review letters
|v 126
|y 2021
|x 1079-7114
856 4 _ |u https://juser.fz-juelich.de/record/891527/files/PhysRevLett.126.132001.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891527
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131268
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21