Home > Publications database > Deep Neural Networks for Analysis of Microscopy Images—Synthetic Data Generation and Adaptive Sampling > print |
001 | 891562 | ||
005 | 20230228121558.0 | ||
024 | 7 | _ | |a 10.3390/cryst11030258 |2 doi |
024 | 7 | _ | |a 2128/33772 |2 Handle |
024 | 7 | _ | |a WOS:000633604100001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01587 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Trampert, Patrick |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Deep Neural Networks for Analysis of Microscopy Images—Synthetic Data Generation and Adaptive Sampling |
260 | _ | _ | |a Basel |c 2021 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674638221_19560 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The analysis of microscopy images has always been an important yet time consuming process in materials science. Convolutional Neural Networks (CNNs) have been very successfully used for a number of tasks, such as image segmentation. However, training a CNN requires a large amount of hand annotated data, which can be a problem for material science data. We present a procedure to generate synthetic data based on ad hoc parametric data modelling for enhancing generalization of trained neural network models. Especially for situations where it is not possible to gather a lot of data, such an approach is beneficial and may enable to train a neural network reasonably. Furthermore, we show that targeted data generation by adaptively sampling the parameter space of the generative models gives superior results compared to generating random data points. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419) |0 G:(EU-Grant)759419 |c 759419 |f ERC-2017-STG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rubinstein, Dmitri |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Boughorbel, Faysal |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schlinkmann, Christian |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Luschkova, Maria |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Slusallek, Philipp |0 0000-0002-2189-2429 |b 5 |
700 | 1 | _ | |a Dahmen, Tim |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.3390/cryst11030258 |g Vol. 11, no. 3, p. 258 - |0 PERI:(DE-600)2661516-2 |n 3 |p 258 - |t Crystals |v 11 |y 2021 |x 2073-4352 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891562/files/Invoice_MDPI_crystals-1104158.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/891562/files/crystals-11-00258.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:891562 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CRYSTALS : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-02-03 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|