000891563 001__ 891563
000891563 005__ 20240712101006.0
000891563 0247_ $$2doi$$a10.5194/acp-21-4039-2021
000891563 0247_ $$2ISSN$$a1680-7316
000891563 0247_ $$2ISSN$$a1680-7324
000891563 0247_ $$2Handle$$a2128/27625
000891563 0247_ $$2altmetric$$aaltmetric:101826518
000891563 0247_ $$2WOS$$aWOS:000631052600004
000891563 037__ $$aFZJ-2021-01588
000891563 082__ $$a550
000891563 1001_ $$0P:(DE-Juel1)171397$$aVogel, Annika$$b0$$eCorresponding author
000891563 245__ $$aIdentifying forecast uncertainties for biogenic gases in the Po Valley related to model configuration in EURAD-IM during PEGASOS 2012
000891563 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000891563 3367_ $$2DRIVER$$aarticle
000891563 3367_ $$2DataCite$$aOutput Types/Journal article
000891563 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619337578_9736
000891563 3367_ $$2BibTeX$$aARTICLE
000891563 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891563 3367_ $$00$$2EndNote$$aJournal Article
000891563 520__ $$aForecasts of biogenic trace gases in the planetary boundary layer (PBL) are highly affected by simulated emission and transport processes. The Po region during the PEGASOS campaign in summer 2012 provides challenging, yet common, conditions for simulating biogenic gases in the PBL. This study identifies and quantifies principal sources of forecast uncertainties induced by various model configurations under these conditions. Specifically, the effects of model configuration on different processes affecting atmospheric distributions of biogenic trace gas distributions are analyzed based on a priori available information. The investigation is based on the EURopean Air pollution Dispersion – Inverse Model (EURAD-IM) chemistry transport model employing the Model for Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1) biogenic emission module and Regional Atmospheric Chemistry Mechanism – Mainz Isoprene Mechanism (RACM-MIM) as the gas phase chemistry mechanism. Two major sources of forecast uncertainties are identified in this study. Firstly, biogenic emissions appear to be exceptionally sensitive to land surface properties inducing total variations in local concentrations of up to 1 order of magnitude. Moreover, these sensitivities are found to be highly similar for different gases and almost constant during the campaign, varying only diurnally. Secondly, the model configuration also highly influences regional flow patterns with significant effects on pollutant transport and mixing. This effect was corroborated by diverging source regions of a representative air mass and thus applies also to non-biogenic gases. As a result, large sensitivities to model configuration are found for surface concentrations of isoprene, as well as OH, affecting reactive atmospheric chemistry. Especially in areas with small-scale emission patterns, changes in the model configuration are able to induce significantly different local concentrations. The amount and complexity of sensitivities found in this study demonstrate the need to consider forecast uncertainties in chemical transport models with a special focus on biogenic emissions and pollutant transport.
000891563 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891563 536__ $$0G:(DE-Juel1)jicg21_20200501$$aCAMS,HITEC,ESKP, REKLIM+,UBA,KLIMAPOLIS (jicg21_20200501)$$cjicg21_20200501$$fCAMS,HITEC,ESKP, REKLIM+,UBA,KLIMAPOLIS$$x1
000891563 588__ $$aDataset connected to CrossRef
000891563 7001_ $$0P:(DE-Juel1)129194$$aElbern, Hendrik$$b1
000891563 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-4039-2021$$gVol. 21, no. 5, p. 4039 - 4057$$n5$$p4039 - 4057$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000891563 8564_ $$uhttps://juser.fz-juelich.de/record/891563/files/invoice_Helmholtz-PUC-2021-21.pdf
000891563 8564_ $$uhttps://juser.fz-juelich.de/record/891563/files/acp-21-4039-2021.pdf$$yOpenAccess
000891563 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pacp-2020-608$$zBelegnr.  1200165527 / 2021
000891563 909CO $$ooai:juser.fz-juelich.de:891563$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b1$$kFZJ
000891563 9130_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000891563 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891563 9141_ $$y2021
000891563 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891563 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891563 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891563 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891563 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891563 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000891563 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000891563 9801_ $$aAPC
000891563 9801_ $$aFullTexts
000891563 980__ $$ajournal
000891563 980__ $$aVDB
000891563 980__ $$aI:(DE-Juel1)IEK-8-20101013
000891563 980__ $$aI:(DE-82)080012_20140620
000891563 980__ $$aAPC
000891563 980__ $$aUNRESTRICTED
000891563 981__ $$aI:(DE-Juel1)ICE-3-20101013