000891569 001__ 891569
000891569 005__ 20220930130312.0
000891569 0247_ $$2doi$$a10.5194/gmd-14-573-2021
000891569 0247_ $$2ISSN$$a1991-959X
000891569 0247_ $$2ISSN$$a1991-9603
000891569 0247_ $$2Handle$$a2128/27545
000891569 0247_ $$2altmetric$$aaltmetric:98976032
000891569 0247_ $$2WOS$$aWOS:000614265500001
000891569 037__ $$aFZJ-2021-01594
000891569 082__ $$a550
000891569 1001_ $$0P:(DE-Juel1)178050$$aBoas, Theresa$$b0$$eCorresponding author$$ufzj
000891569 245__ $$aImproving the representation of cropland sites in the Community Land Model (CLM) version 5.0
000891569 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000891569 3367_ $$2DRIVER$$aarticle
000891569 3367_ $$2DataCite$$aOutput Types/Journal article
000891569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639054391_6863
000891569 3367_ $$2BibTeX$$aARTICLE
000891569 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891569 3367_ $$00$$2EndNote$$aJournal Article
000891569 520__ $$aThe incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy, and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site-specific field data focusing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields, as well as water, energy, and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines following Lu et al. (2017) in CLM5; (2) implementing plant-specific parameters for sugar beet, potatoes, and winter wheat, thereby adding the two crop functional types (CFTs) for sugar beet and potatoes to the list of actively managed crops in CLM5; and (3) introducing a cover-cropping subroutine that allows multiple crop types on the same column within 1 year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is an agricultural management technique with a long history that is regaining popularity as it reduces erosion and improves soil health and carbon storage and is commonly used in the regions evaluated in this study. We compared simulation results with field data and found that both the new crop-specific parameterization and the winter wheat subroutines led to a significant simulation improvement in terms of energy fluxes (root-mean-square error, RMSE, reduction for latent and sensible heat by up to 57 % and 59 %, respectively), leaf area index (LAI), net ecosystem exchange, and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover-cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI magnitudes, seasonal cycle of LAI, and latent heat flux (reduction of wintertime RMSE for latent heat flux by 42 %). Our modifications significantly improved model simulations and should therefore be applied in future studies with CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
000891569 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000891569 536__ $$0G:(DE-Juel1)jicg41_20190501$$aBetter predictions with environmental simulation models: optimally integrating new data sources (jicg41_20190501)$$cjicg41_20190501$$fBetter predictions with environmental simulation models: optimally integrating new data sources$$x1
000891569 536__ $$0G:(DE-Juel1)jibg36_20191101$$aHigh-resolution regional reanalysis with TerrSysMP (jibg36_20191101)$$cjibg36_20191101$$fHigh-resolution regional reanalysis with TerrSysMP$$x2
000891569 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x3
000891569 588__ $$aDataset connected to CrossRef
000891569 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1
000891569 7001_ $$00000-0003-2263-0073$$aGrünwald, Thomas$$b2
000891569 7001_ $$0P:(DE-HGF)0$$aHeinesch, Bernard$$b3
000891569 7001_ $$00000-0002-5335-6209$$aRyu, Dongryeol$$b4
000891569 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b5
000891569 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000891569 7001_ $$00000-0003-4982-146X$$aWestern, Andrew$$b7
000891569 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b8$$ufzj
000891569 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-14-573-2021$$gVol. 14, no. 1, p. 573 - 601$$n1$$p573 - 601$$tGeoscientific model development$$v14$$x1991-9603$$y2021
000891569 8564_ $$uhttps://juser.fz-juelich.de/record/891569/files/invoice_Helmholtz-PUC-2021-21.pdf
000891569 8564_ $$uhttps://juser.fz-juelich.de/record/891569/files/gmd-14-573-2021.pdf$$yOpenAccess
000891569 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pgmd-2020-241$$zBelegnr. 1200165527 / 2021
000891569 909CO $$ooai:juser.fz-juelich.de:891569$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000891569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178050$$aForschungszentrum Jülich$$b0$$kFZJ
000891569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000891569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b5$$kFZJ
000891569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000891569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b8$$kFZJ
000891569 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000891569 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000891569 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000891569 9141_ $$y2021
000891569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000891569 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891569 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891569 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000891569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000891569 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000891569 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000891569 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000891569 980__ $$ajournal
000891569 980__ $$aVDB
000891569 980__ $$aI:(DE-Juel1)IBG-3-20101118
000891569 980__ $$aI:(DE-82)080012_20140620
000891569 980__ $$aI:(DE-Juel1)NIC-20090406
000891569 980__ $$aAPC
000891569 980__ $$aUNRESTRICTED
000891569 9801_ $$aAPC
000891569 9801_ $$aFullTexts