000891570 001__ 891570
000891570 005__ 20240712101006.0
000891570 0247_ $$2doi$$a10.5194/gmd-14-495-2021
000891570 0247_ $$2ISSN$$a1991-959X
000891570 0247_ $$2ISSN$$a1991-9603
000891570 0247_ $$2Handle$$a2128/27629
000891570 0247_ $$2altmetric$$aaltmetric:98682462
000891570 0247_ $$2WOS$$aWOS:000613895800001
000891570 037__ $$aFZJ-2021-01595
000891570 082__ $$a550
000891570 1001_ $$0P:(DE-Juel1)174161$$aEmmerichs, Tamara$$b0
000891570 245__ $$aA revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54
000891570 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000891570 3367_ $$2DRIVER$$aarticle
000891570 3367_ $$2DataCite$$aOutput Types/Journal article
000891570 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618558271_9426
000891570 3367_ $$2BibTeX$$aARTICLE
000891570 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891570 3367_ $$00$$2EndNote$$aJournal Article
000891570 520__ $$aDry deposition to vegetation is a major sink of ground-level ozone and is responsible for about 20 % of the total tropospheric ozone loss. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for the global tropospheric ozone budget and might account for the mismatch with observations. The model used in this study, the Modular Earth Submodel System version 2 (MESSy2) linked to the fifth-generation European Centre Hamburg general circulation model (ECHAM5) as an atmospheric circulation model (EMAC), is no exception. Like many global models, EMAC employs a “resistance in series” scheme with the major surface deposition via plant stomata which is hardly sensitive to meteorology, depending only on solar radiation. Unlike many global models, however, EMAC uses a simplified high resistance for non-stomatal deposition which makes this pathway negligible in the model. However, several studies have shown this process to be comparable in magnitude to the stomatal uptake, especially during the night over moist surfaces. Hence, we present here a revised dry deposition in EMAC including meteorological adjustment factors for stomatal closure and an explicit cuticular pathway. These modifications for the three stomatal stress functions have been included in the newly developed MESSy VERTEX submodel, i.e. a process model describing the vertical exchange in the atmospheric boundary layer, which will be evaluated for the first time here. The scheme is limited by a small number of different surface types and generalized parameters. The MESSy submodel describing the dry deposition of trace gases and aerosols (DDEP) has been revised accordingly. The comparison of the simulation results with measurement data at four sites shows that the new scheme enables a more realistic representation of dry deposition. However, the representation is strongly limited by the local meteorology. In total, the changes increase the dry deposition velocity of ozone up to a factor of 2 globally, whereby the highest impact arises from the inclusion of cuticular uptake, especially over moist surfaces. This corresponds to a 6 % increase of global annual dry deposition loss of ozone resulting globally in a slight decrease of ground-level ozone but a regional decrease of up to 25 %. The change of ozone dry deposition is also reasoned by the altered loss of ozone precursors. Thus, the revision of the process parameterization as documented here has, among others, the potential to significantly reduce the overestimation of tropospheric ozone in global models.
000891570 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891570 588__ $$aDataset connected to CrossRef
000891570 7001_ $$0P:(DE-Juel1)180121$$aKerkweg, Astrid$$b1$$ufzj
000891570 7001_ $$0P:(DE-HGF)0$$aOuwersloot, Huug$$b2
000891570 7001_ $$00000-0002-1990-0928$$aFares, Silvano$$b3
000891570 7001_ $$00000-0002-8516-3356$$aMammarella, Ivan$$b4
000891570 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5$$eCorresponding author
000891570 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-14-495-2021$$gVol. 14, no. 1, p. 495 - 519$$n1$$p495 - 519$$tGeoscientific model development$$v14$$x1991-9603$$y2021
000891570 8564_ $$uhttps://juser.fz-juelich.de/record/891570/files/invoice_Helmholtz-PUC-2021-21.pdf
000891570 8564_ $$uhttps://juser.fz-juelich.de/record/891570/files/gmd-14-495-2021.pdf$$yOpenAccess
000891570 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pgmd-2020-139$$zBelegnr. 1200165527 / 2021
000891570 909CO $$ooai:juser.fz-juelich.de:891570$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174161$$aForschungszentrum Jülich$$b0$$kFZJ
000891570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180121$$aForschungszentrum Jülich$$b1$$kFZJ
000891570 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
000891570 9130_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000891570 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891570 9141_ $$y2021
000891570 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000891570 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891570 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2019$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891570 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000891570 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000891570 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000891570 9801_ $$aAPC
000891570 9801_ $$aFullTexts
000891570 980__ $$ajournal
000891570 980__ $$aVDB
000891570 980__ $$aUNRESTRICTED
000891570 980__ $$aI:(DE-Juel1)IEK-8-20101013
000891570 980__ $$aAPC
000891570 981__ $$aI:(DE-Juel1)ICE-3-20101013