001     891571
005     20240711085550.0
024 7 _ |2 doi
|a 10.1016/j.oceram.2021.100090
024 7 _ |2 Handle
|a 2128/27551
024 7 _ |a altmetric:103808625
|2 altmetric
024 7 _ |a WOS:001103573700007
|2 WOS
037 _ _ |a FZJ-2021-01596
041 _ _ |a English
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)171463
|a Go, Teresa
|b 0
|e Corresponding author
245 _ _ |a Processing and oxidation response of Cr2AlC MAX-phase composites containing ceramic fibers
260 _ _ |a Amsterdam
|b Elsevier
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1618222549_21836
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a The grant is MAXCOM, 03SF0534.
520 _ _ |a Three different ceramic matrix composites (CMCs) were produced using Cr2AlC as a matrix, and carbon, SiC and Al2O3 short fibers as a secondary phase. Cr2AlC powders were synthesized by solid-state reaction, followed by mixing with the fibers, and full densification using a field-assisted sintering technique. Of the three different fiber types, Carbon fibers reacted strongly with Cr2AlC, while the reaction with SiC fibers was more limited and alumina fibers didn’t show any reaction. Oxidation tests of the monolithic Cr2AlC and the composites were performed by thermogravimetric analysis. An alumina layer formed at 1000 ​°C on every sample, well attached and worked as a good oxidation barrier. Under realistic conditions using a burner rig for cyclic oxidation at 1200 ​°C for 500 cycles, the oxidation resistance of the alumina fiber CMC is good, as no defects or degradation are visible and the alumina layer is well attached.
536 _ _ |0 G:(DE-HGF)POF4-124
|a 124 - Hochtemperaturtechnologien (POF4-124)
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129670
|a Vaßen, Robert
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 2
700 1 _ |0 P:(DE-Juel1)162271
|a Gonzalez, Jesus
|b 3
770 _ _ |a Young Ceramists in the Spotlight
773 _ _ |0 PERI:(DE-600)3023650-2
|a 10.1016/j.oceram.2021.100090
|p 100090
|t Open ceramics
|v 6
|x 2666-5395
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/891571/files/1-s2.0-S2666539521000365-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891571
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171463
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)171463
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129670
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)161591
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)161591
|a JARA
|b 2
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162271
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)162271
|a RWTH Aachen
|b 3
|k RWTH
913 0 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
913 1 _ |0 G:(DE-HGF)POF4-124
|1 G:(DE-HGF)POF4-120
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|v Hochtemperaturtechnologien
|x 0
914 1 _ |y 2021
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21