000891579 001__ 891579
000891579 005__ 20240610115812.0
000891579 0247_ $$2ISSN$$a0022-7722
000891579 0247_ $$2ISSN$$a1447-073X
000891579 0247_ $$2ISSN$$a1447-6959
000891579 0247_ $$2doi$$a10.1063/5.0020652
000891579 0247_ $$2Handle$$a2128/27553
000891579 0247_ $$2WOS$$aWOS:000590858100001
000891579 037__ $$aFZJ-2021-01604
000891579 041__ $$aEnglish
000891579 082__ $$a530
000891579 1001_ $$0P:(DE-Juel1)176471$$aFreter, Lars$$b0$$eCorresponding author
000891579 245__ $$aInterplay of intrinsic and extrinsic states in pinning and passivation of m -plane facets of GaN n - p - n junctions
000891579 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000891579 3367_ $$2DRIVER$$aarticle
000891579 3367_ $$2DataCite$$aOutput Types/Journal article
000891579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617974514_8672
000891579 3367_ $$2BibTeX$$aARTICLE
000891579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891579 3367_ $$00$$2EndNote$$aJournal Article
000891579 520__ $$aIntrinsic and extrinsic pinning and passivation of m-plane cleavage facets of GaN n-p-n junctions were investigated by cross-sectional scanning tunneling microscopy and spectroscopy. On freshly cleaved and clean p-type GaN(101⎯⎯⎯0) surfaces, the Fermi level is found to be extrinsically pinned by defect states, whereas n-type surfaces are intrinsically pinned by the empty surface state. For both types of doping, air exposure reduces the density of pinning states and shifts the pinning levels toward the band edges. These effects are assigned to water adsorption and dissociation, passivating intrinsic and extrinsic gap states. The revealed delicate interplay of intrinsic and extrinsic surface states at GaN(101⎯⎯⎯0) surfaces is a critical factor for realizing flatband conditions at sidewall facets of nanowires exhibiting complex doping structures.
000891579 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000891579 588__ $$aDataset connected to DataCite
000891579 7001_ $$0P:(DE-Juel1)171441$$aWang, Yuhan$$b1
000891579 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, M.$$b2
000891579 7001_ $$0P:(DE-HGF)0$$aCarlin, J.-F.$$b3
000891579 7001_ $$00000-0002-8474-217X$$aButté, R.$$b4
000891579 7001_ $$00000-0003-3610-981X$$aGrandjean, N.$$b5
000891579 7001_ $$0P:(DE-HGF)0$$aEisele, H.$$b6
000891579 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b7
000891579 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b8
000891579 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0020652$$gVol. 128, no. 18, p. 185701 -$$n18$$p185701 -$$tJournal of applied physics$$v128$$x0021-8979$$y2020
000891579 8564_ $$uhttps://juser.fz-juelich.de/record/891579/files/5.0020652.pdf$$yPublished on 2020-11-09. Available in OpenAccess from 2021-11-09.
000891579 909CO $$ooai:juser.fz-juelich.de:891579$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176471$$aForschungszentrum Jülich$$b0$$kFZJ
000891579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171441$$aForschungszentrum Jülich$$b1$$kFZJ
000891579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b2$$kFZJ
000891579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000891579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b8$$kFZJ
000891579 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891579 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891579 9141_ $$y2021
000891579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891579 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2019$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000891579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000891579 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000891579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891579 920__ $$lyes
000891579 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891579 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000891579 9801_ $$aFullTexts
000891579 980__ $$ajournal
000891579 980__ $$aVDB
000891579 980__ $$aUNRESTRICTED
000891579 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891579 980__ $$aI:(DE-Juel1)PGI-5-20110106
000891579 981__ $$aI:(DE-Juel1)ER-C-1-20170209