001     891597
005     20220930130312.0
024 7 _ |a 10.1002/btpr.3144
|2 doi
024 7 _ |a 1520-6033
|2 ISSN
024 7 _ |a 8756-7938
|2 ISSN
024 7 _ |a 2128/28579
|2 Handle
024 7 _ |a altmetric:102578471
|2 altmetric
024 7 _ |a pmid:33745237
|2 pmid
024 7 _ |a WOS:000634853000001
|2 WOS
037 _ _ |a FZJ-2021-01608
082 _ _ |a 660
100 1 _ |a Jansen, Roman
|0 P:(DE-Juel1)171232
|b 0
245 _ _ |a Microbioreactor‐assisted cultivation workflows for time‐efficient phenotyping of protein producing Aspergillus niger in batch and fed‐batch mode
260 _ _ |a Malden, MA
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630401776_10532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, many fungal genomes have become publicly available. In combination with novel gene editing tools, this allows for accelerated strain construction, making filamentous fungi even more interesting for the production of valuable products. However, besides their extraordinary production and secretion capacities, fungi most often exhibit challenging morphologies, which need to be screened for the best operational window. Thereby, combining genetic diversity with various environmental parameters results in a large parameter space, creating a strong demand for time‐efficient phenotyping technologies. Microbioreactor systems, which have been well established for bacterial organisms, enable an increased cultivation throughput via parallelization and miniaturization, as well as enhanced process insight via non‐invasive online monitoring. Nevertheless, only few reports about microtiter plate cultivation for filamentous fungi in general and even less with online monitoring exist in literature. Moreover, screening under batch conditions in microscale, when a fed‐batch process is performed in large‐scale might even lead to the wrong identification of optimized parameters. Therefore, in this study a novel workflow for Aspergillus niger was developed, allowing for up to 48 parallel microbioreactor cultivations in batch as well as fed‐batch mode. This workflow was validated against lab‐scale bioreactor cultivations to proof scalability. With the optimized cultivation protocol, three different micro‐scale fed‐batch strategies were tested to identify the best protein production conditions for intracellular model product GFP. Subsequently, the best feeding strategy was again validated in a lab‐scale bioreactor.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Morschett, Holger
|0 P:(DE-Juel1)161365
|b 1
700 1 _ |a Hasenklever, Dennis
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Moch, Matthias
|0 P:(DE-Juel1)129045
|b 3
|u fzj
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 4
|u fzj
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 5
|e Corresponding author
773 _ _ |a 10.1002/btpr.3144
|0 PERI:(DE-600)2003526-3
|n 4
|p e3144
|t Biotechnology progress
|v 37
|y 2021
|x 1520-6033
856 4 _ |u https://juser.fz-juelich.de/record/891597/files/btpr.3144.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891597
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129045
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL PROGR : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21