000891616 001__ 891616
000891616 005__ 20250129094242.0
000891616 0247_ $$2Handle$$a2128/28117
000891616 037__ $$aFZJ-2021-01627
000891616 041__ $$aEnglish
000891616 1001_ $$0P:(DE-Juel1)187095$$aQdemat, Asmaa$$b0$$eCorresponding author
000891616 1112_ $$aDigital Institute Seminar JCNS-2$$conline event$$d2021-04-08 - 2021-04-08$$wonline event
000891616 245__ $$aMagnetic Nanoparticles: From Nanoscale to Mesoscale$$f2021-04-08 - 
000891616 260__ $$c2021
000891616 3367_ $$033$$2EndNote$$aConference Paper
000891616 3367_ $$2DataCite$$aOther
000891616 3367_ $$2BibTeX$$aINPROCEEDINGS
000891616 3367_ $$2ORCID$$aLECTURE_SPEECH
000891616 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1617965486_8672$$xInvited
000891616 3367_ $$2DINI$$aOther
000891616 520__ $$aMagnetic nanoparticles find promising applications in biomedicine. Examples of these applications include new methods for cancer treatment, such as magnetic drug targeting [1] and magnetic hyperthermia [2], or it can be used as contrast agents or tracers in magnetic resonance imaging [3] and magnetic particle imaging [4]. Such applications require magnetic nanoparticles with customized structural and magnetic properties, strongly dependent on particle size and shape [5]. Nanoparticle's shape is of key importance and significantly impacts their magnetic properties for their use in several applications. The nanoparticles' magnetic shape anisotropy can be assumed much larger than the magnetocrystalline anisotropy and can strongly affect magnetic moments orientation inside the particles. Moreover, the dipolar interaction between the nanoparticles depends on the particle shape and will influence the structural agglomerate formation.Recent advances in nanoparticle synthesis techniques have enabled the synthesis of a wide variety of precisely controlled, non-spherical particles, including cubes, cube-like shapes [6], and ellipsoids. Nanoparticles with a shape that deviates from a perfect cube have gained much interest and become experimentally available because they strongly influence the nanocubes' large-scale arrangement. Cube Nanoparticles with rounded edges result in an anisotropic shape known as a superellipsoid [7] or superball, which is an asymmetric body that describes the shape that smoothly interpolates between a sphere and a cube. To the best of my knowledge, there's no available theoretical model for the evaluation of SAXS data of particles with superball shape, and only it has been approximated by spheres of different radii [8]. Therefore, a theoretical form factor for a more precise evaluation of the SAXS data of superball particles has been developed, and it will be presented in our contribution.Also, in this contribution, we will present a combined study of magnetic field-dependent SAXS and XPCS measurements on hematite (α-Fe2O3) nanospindles, giving insight into the particle morphological information (length, radius, size distribution), magnetic orientation, and microscopic dynamics (relaxation of nanospindles). Hematite nanospindles are receiving considerable attention due to their unique behavior in an applied magnetic field. In contrast to other elongated nanoparticles, they bear a strong magnetocrystalline anisotropy and orient with their long axis perpendicular to an applied magnetic field above the Morin transition (TM = 263 K) [9].Moreover, we will show in our contribution the field-dependent polarized SANS results of different nanospheres. Additionally, SANSPOL results with and without applied magnetic field on pure dispersion of hematite nanospindles and for hybrid ferrofluidic dispersion consisting of hematite nanospindles decorated with spherical ferrite nanoparticles will be presented. The in-situ structure formation in such hybrid ferrofluids includes the orientational behavior of anisotropic structures as a function of the applied magnetic field to elucidate the correlation of superstructure formation and ferrofluidic properties, is studied.References[1] Mejías, R., Pérez-Yagüe, S., Gutiérrez, L. et al. (2011). Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials, 32(11), 2938–2952. https://doi.org/10.1016/j.biomaterials.2011.01.008[2] Maier-Hauff, K., Ulrich, F., Nestler, D. et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 103(2), 317–324. https://doi.org/10.1007/s11060-010-0389-0[3] Shin, T.-H., Choi, Y., Kim, S., & Cheon, J. (2015). Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews, 44(14), 4501–4516. https://doi.org/10.1039/C4CS00345D[4] Khandhar, A. P., Ferguson, R. M., Arami, H., & Krishnan, K. M. (2013). Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials, 34(15), 3837–3845. https://doi.org/10.1016/j.biomaterials.2013.01.087[5] Hilger, I., & Kaiser, W. A. (2012). Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine, 7(9), 1443–1459. https://doi.org/10.2217/nnm.12.112[6] Wetterskog, E., Agthe, M., Mayence, A.et al. (2014). Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Science and Technology of Advanced Materials, 15(5), 055010. https://doi.org/10.1088/1468-6996/15/5/055010[7] Rossi, L., Sacanna, S., Irvine, W. T. M., Chaikin, P. M., Pine, D. J., & Philipse, A. P. (2011). Cubic crystals from cubic colloids. Soft Matter, 7(9), 4139–4142. https://doi.org/10.1039/C0SM01246G[8] Donaldson, J. G., Linse, P., & Kantorovich, S. S. (2017). How cube-like must magnetic nanoparticles be to modify their self-assembly? Nanoscale, 9(19), 6448–6462. https://doi.org/10.1039/C7NR01245D[9] Morrish A H. (1994). Canted Antiferromagnetism: Hematite, (Singapore: World Scientific)
000891616 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000891616 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000891616 8564_ $$uhttps://juser.fz-juelich.de/record/891616/files/Abstract_Asma_Qdemat.pdf$$yOpenAccess
000891616 909CO $$ooai:juser.fz-juelich.de:891616$$pdriver$$pVDB$$popen_access$$popenaire
000891616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187095$$aForschungszentrum Jülich$$b0$$kFZJ
000891616 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000891616 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000891616 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000891616 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000891616 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000891616 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000891616 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000891616 9141_ $$y2021
000891616 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891616 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000891616 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000891616 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000891616 9801_ $$aFullTexts
000891616 980__ $$atalk
000891616 980__ $$aVDB
000891616 980__ $$aUNRESTRICTED
000891616 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000891616 980__ $$aI:(DE-Juel1)PGI-4-20110106
000891616 980__ $$aI:(DE-82)080009_20140620
000891616 981__ $$aI:(DE-Juel1)JCNS-2-20110106