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Magnetic nanoparticles find promising applications in biomedicine. Examples of these applications 

include new methods for cancer treatment, such as magnetic drug targeting [1] and magnetic hyperthermia 

[2], or it can be used as contrast agents or tracers in magnetic resonance imaging [3] and magnetic particle 

imaging [4]. Such applications require magnetic nanoparticles with customized structural and magnetic 

properties, strongly dependent on particle size and shape [5].  Nanoparticle's shape is of key importance 

and significantly impacts their magnetic properties for their use in several applications. The nanoparticles' 

magnetic shape anisotropy can be assumed much larger than the magnetocrystalline anisotropy and can 

strongly affect magnetic moments orientation inside the particles.  Moreover, the dipolar interaction 

between the nanoparticles depends on the particle shape and will influence the structural agglomerate 

formation. 

Recent advances in nanoparticle synthesis techniques have enabled the synthesis of a wide variety of 

precisely controlled, non-spherical particles, including cubes, cube-like shapes [6], and ellipsoids. 

Nanoparticles with a shape that deviates from a perfect cube have gained much interest and become 

experimentally available because they strongly influence the nanocubes' large-scale arrangement.  Cube 

Nanoparticles with rounded edges result in an anisotropic shape known as a superellipsoid [7] or 

superball, which is an asymmetric body that describes the shape that smoothly interpolates between a 

sphere and a cube. To the best of my knowledge, there's no available theoretical model for the evaluation 

of SAXS data of particles with superball shape, and only it has been approximated by spheres of different 

radii [8].  Therefore, a theoretical form factor for a more precise evaluation of the SAXS data of superball 

particles has been developed, and it will be presented in our contribution. 

Also, in this contribution, we will present a combined study of magnetic field-dependent SAXS and XPCS 

measurements on hematite (α-Fe2O3) nanospindles, giving insight into the particle morphological 

information (length, radius, size distribution), magnetic orientation, and microscopic dynamics (relaxation 

of nanospindles). Hematite nanospindles are receiving considerable attention due to their unique behavior 

in an applied magnetic field. In contrast to other elongated nanoparticles, they bear a strong 

magnetocrystalline anisotropy and orient with their long axis perpendicular to an applied magnetic field 

above the Morin transition (TM = 263 K) [9]. 

Moreover, we will show in our contribution the field-dependent polarized SANS results of different 

nanospheres. Additionally, SANSPOL results with and without applied magnetic field on pure dispersion 

of hematite nanospindles and for hybrid ferrofluidic dispersion consisting of hematite nanospindles 

decorated with spherical ferrite nanoparticles will be presented.  The in-situ structure formation in such 

hybrid ferrofluids includes the orientational behavior of anisotropic structures as a function of the applied 

magnetic field to elucidate the correlation of superstructure formation and ferrofluidic properties, is 

studied.   
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