000891633 001__ 891633
000891633 005__ 20220930130312.0
000891633 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118006
000891633 0247_ $$2ISSN$$a1053-8119
000891633 0247_ $$2ISSN$$a1095-9572
000891633 0247_ $$2Handle$$a2128/27595
000891633 0247_ $$2altmetric$$aaltmetric:103361509
000891633 0247_ $$2pmid$$a33819611
000891633 0247_ $$2WOS$$aWOS:000660300400008
000891633 037__ $$aFZJ-2021-01629
000891633 082__ $$a610
000891633 1001_ $$0P:(DE-Juel1)171422$$aLiu, Xiaojin$$b0$$ufzj
000891633 245__ $$aFunctional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate
000891633 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000891633 3367_ $$2DRIVER$$aarticle
000891633 3367_ $$2DataCite$$aOutput Types/Journal article
000891633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618300769_15775
000891633 3367_ $$2BibTeX$$aARTICLE
000891633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891633 3367_ $$00$$2EndNote$$aJournal Article
000891633 520__ $$aA wide homology between human and macaque striatum is often assumed as in both the striatum is involved in cognition, emotion and executive functions. However, differences in functional and structural organization between human and macaque striatum may reveal evolutionary divergence and shed light on human vulnerability to neuropsychiatric diseases. For instance, dopaminergic dysfunction of the human striatum is considered to be a pathophysiological underpinning of different disorders, such as Parkinson's disease (PD) and schizophrenia (SCZ). Previous investigations have found a wide similarity in structural connectivity of the striatum between human and macaque, leaving the cross-species comparison of its functional organization unknown. In this study, resting-state functional connectivity (RSFC) derived striatal parcels were compared based on their homologous cortico-striatal connectivity. The goal here was to identify striatal parcels whose connectivity is human-specific compared to macaque parcels. Functional parcellation revealed that the human striatum was split into dorsal, dorsomedial, and rostral caudate and ventral, central, and caudal putamen, while the macaque striatum was divided into dorsal, and rostral caudate and rostral, and caudal putamen. Cross-species comparison indicated dissimilar cortico-striatal RSFC of the topographically similar dorsal caudate. We probed clinical relevance of the striatal clusters by examining differences in their cortico-striatal RSFC and gray matter (GM) volume between patients (with PD and SCZ) and healthy controls. We found abnormal RSFC not only between dorsal caudate, but also between rostral caudate, ventral, central and caudal putamen and widespread cortical regions for both PD and SCZ patients. Also, we observed significant structural atrophy in rostral caudate, ventral and central putamen for both PD and SCZ while atrophy in the dorsal caudate was specific to PD. Taken together, our cross-species comparative results revealed shared and human-specific RSFC of different striatal clusters reinforcing the complex organization and function of the striatum. In addition, we provided a testable hypothesis that abnormalities in a region with human-specific connectivity, i.e., dorsal caudate, might be associated with neuropsychiatric disorders.
000891633 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891633 588__ $$aDataset connected to CrossRef
000891633 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1$$ufzj
000891633 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b2$$ufzj
000891633 7001_ $$0P:(DE-Juel1)177058$$aWu, Jianxiao$$b3$$ufzj
000891633 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b4
000891633 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b5$$ufzj
000891633 7001_ $$00000-0001-6302-8631$$aMars, Rogier B.$$b6
000891633 7001_ $$0P:(DE-HGF)0$$aSommer, Iris E.$$b7
000891633 7001_ $$0P:(DE-Juel1)174483$$aEickhoff, Claudia R.$$b8$$ufzj
000891633 7001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b9$$ufzj
000891633 7001_ $$00000-0003-4596-1502$$aJardri, Renaud$$b10
000891633 7001_ $$0P:(DE-Juel1)177889$$aReetz, Kathrin$$b11$$ufzj
000891633 7001_ $$0P:(DE-HGF)0$$aDogan, Imis$$b12
000891633 7001_ $$0P:(DE-HGF)0$$aAleman, André$$b13
000891633 7001_ $$0P:(DE-HGF)0$$aKogler, Lydia$$b14
000891633 7001_ $$0P:(DE-HGF)0$$aGruber, Oliver$$b15
000891633 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b16
000891633 7001_ $$00000-0002-5245-4958$$aMathys, Christian$$b17
000891633 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b18$$eCorresponding author$$ufzj
000891633 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118006$$gp. 118006 -$$p118006 -$$tNeuroImage$$v235$$x1053-8119$$y2021
000891633 8564_ $$uhttps://juser.fz-juelich.de/record/891633/files/Invoice_OAD0000111972.pdf
000891633 8564_ $$uhttps://juser.fz-juelich.de/record/891633/files/postprint_Functional%20parcellation%20of%20human%20and%20macaque%20striatum%20reveals%20human-specific%20connectivity%20in%20the%20dorsal%20caudate.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000891633 8564_ $$uhttps://juser.fz-juelich.de/record/891633/files/1-s2.0-S1053811921002834-main.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000891633 8767_ $$8OAD0000111972$$92021-04-06$$d2021-04-12$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200165512 / 2021
000891633 909CO $$ooai:juser.fz-juelich.de:891633$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171422$$aForschungszentrum Jülich$$b0$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b2$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177058$$aForschungszentrum Jülich$$b3$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b4$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b5$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174483$$aForschungszentrum Jülich$$b8$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b9$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177889$$aForschungszentrum Jülich$$b11$$kFZJ
000891633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b18$$kFZJ
000891633 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000891633 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891633 9141_ $$y2021
000891633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000891633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891633 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891633 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000891633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891633 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000891633 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000891633 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x2
000891633 980__ $$ajournal
000891633 980__ $$aVDB
000891633 980__ $$aUNRESTRICTED
000891633 980__ $$aI:(DE-Juel1)INM-7-20090406
000891633 980__ $$aI:(DE-Juel1)INM-11-20170113
000891633 980__ $$aI:(DE-Juel1)INM-1-20090406
000891633 980__ $$aAPC
000891633 9801_ $$aAPC
000891633 9801_ $$aFullTexts