000891638 001__ 891638
000891638 005__ 20240712113150.0
000891638 0247_ $$2doi$$a10.1111/jace.17830
000891638 0247_ $$2ISSN$$a0002-7820
000891638 0247_ $$2ISSN$$a1551-2916
000891638 0247_ $$2Handle$$a2128/28178
000891638 0247_ $$2WOS$$aWOS:000648036800001
000891638 037__ $$aFZJ-2021-01634
000891638 082__ $$a660
000891638 1001_ $$0P:(DE-Juel1)176750$$aSun, Mengli$$b0
000891638 245__ $$aProperties of irradiated sodium borosilicate glasses from experiment and atomistic simulations
000891638 260__ $$aWesterville, Ohio$$bSoc.$$c2021
000891638 3367_ $$2DRIVER$$aarticle
000891638 3367_ $$2DataCite$$aOutput Types/Journal article
000891638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626183909_14726
000891638 3367_ $$2BibTeX$$aARTICLE
000891638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891638 3367_ $$00$$2EndNote$$aJournal Article
000891638 520__ $$aWith a combination of atomistic modeling and experimental techniques, we have investigated the structural and elastic parameters of sodium borosilicate glasses, including irradiation-induced changes. Both approaches show that the Young's modulus depends linearly on the density of material. The simulated glass density and boron speciation match also the estimates by independent, elemental glass composition-based models, indicating that atomistic simulations could be used in validation of theoretical models and experimental results. This allows us to formulate Young's modulus—density relationships for investigated borosilicate glasses and test the existing empirical model for description of Vickers hardness of these materials. The simulation of irradiation reveals a change of B[4] content under irradiation. By applying a simple defects accumulation procedure, we are able to correctly reproduce the measured critical irradiation dose of ~0.1 dpa and provide reasonable information on density change and stored internal energy. With the obtained agreements between the experimental and simulation results, we obtained superior insights into the atomic-scale structural evolution of irradiated borosilicate glasses.
000891638 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891638 536__ $$0G:(DE-Juel1)hpo15_20130501$$aFirst-principles modeling of minerals, melts and fluids at high pressures and high temperatures (hpo15_20130501)$$chpo15_20130501$$fFirst-principles modeling of minerals, melts and fluids at high pressures and high temperatures$$x1
000891638 588__ $$aDataset connected to CrossRef
000891638 7001_ $$0P:(DE-HGF)0$$aJahn, Sandro$$b1
000891638 7001_ $$00000-0001-9117-0854$$aPeng, Haibo$$b2
000891638 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaoyang$$b3
000891638 7001_ $$0P:(DE-HGF)0$$aWang, Tieshan$$b4$$eCorresponding author
000891638 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr M.$$b5$$eCorresponding author
000891638 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17830$$gp. jace.17830$$n9$$p4479-4491$$tJournal of the American Ceramic Society$$v104$$x1551-2916$$y2021
000891638 8564_ $$uhttps://juser.fz-juelich.de/record/891638/files/jace.17830.pdf$$yOpenAccess
000891638 8767_ $$d2021-03-24$$eAPC$$jDEAL$$lDeposit: Wiley
000891638 909CO $$ooai:juser.fz-juelich.de:891638$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176750$$aForschungszentrum Jülich$$b0$$kFZJ
000891638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b5$$kFZJ
000891638 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891638 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891638 9141_ $$y2021
000891638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000891638 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891638 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2019$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000891638 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891638 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000891638 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000891638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891638 920__ $$lyes
000891638 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000891638 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000891638 9801_ $$aFullTexts
000891638 980__ $$ajournal
000891638 980__ $$aVDB
000891638 980__ $$aUNRESTRICTED
000891638 980__ $$aI:(DE-Juel1)IEK-13-20190226
000891638 980__ $$aI:(DE-Juel1)NIC-20090406
000891638 980__ $$aAPC
000891638 981__ $$aI:(DE-Juel1)IET-3-20190226