001     891638
005     20240712113150.0
024 7 _ |a 10.1111/jace.17830
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/28178
|2 Handle
024 7 _ |a WOS:000648036800001
|2 WOS
037 _ _ |a FZJ-2021-01634
082 _ _ |a 660
100 1 _ |a Sun, Mengli
|0 P:(DE-Juel1)176750
|b 0
245 _ _ |a Properties of irradiated sodium borosilicate glasses from experiment and atomistic simulations
260 _ _ |a Westerville, Ohio
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626183909_14726
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With a combination of atomistic modeling and experimental techniques, we have investigated the structural and elastic parameters of sodium borosilicate glasses, including irradiation-induced changes. Both approaches show that the Young's modulus depends linearly on the density of material. The simulated glass density and boron speciation match also the estimates by independent, elemental glass composition-based models, indicating that atomistic simulations could be used in validation of theoretical models and experimental results. This allows us to formulate Young's modulus—density relationships for investigated borosilicate glasses and test the existing empirical model for description of Vickers hardness of these materials. The simulation of irradiation reveals a change of B[4] content under irradiation. By applying a simple defects accumulation procedure, we are able to correctly reproduce the measured critical irradiation dose of ~0.1 dpa and provide reasonable information on density change and stored internal energy. With the obtained agreements between the experimental and simulation results, we obtained superior insights into the atomic-scale structural evolution of irradiated borosilicate glasses.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|f POF IV
|x 0
536 _ _ |a First-principles modeling of minerals, melts and fluids at high pressures and high temperatures (hpo15_20130501)
|0 G:(DE-Juel1)hpo15_20130501
|c hpo15_20130501
|f First-principles modeling of minerals, melts and fluids at high pressures and high temperatures
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jahn, Sandro
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Peng, Haibo
|0 0000-0001-9117-0854
|b 2
700 1 _ |a Zhang, Xiaoyang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Tieshan
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Kowalski, Piotr M.
|0 P:(DE-Juel1)137024
|b 5
|e Corresponding author
773 _ _ |a 10.1111/jace.17830
|g p. jace.17830
|0 PERI:(DE-600)2008170-4
|n 9
|p 4479-4491
|t Journal of the American Ceramic Society
|v 104
|y 2021
|x 1551-2916
856 4 _ |u https://juser.fz-juelich.de/record/891638/files/jace.17830.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891638
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)137024
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2019
|d 2021-01-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21