000891651 001__ 891651
000891651 005__ 20220111142650.0
000891651 0247_ $$2doi$$a10.1038/s41586-021-03418-1
000891651 0247_ $$2ISSN$$a0028-0836
000891651 0247_ $$2ISSN$$a1476-4687
000891651 0247_ $$2Handle$$a2128/27754
000891651 0247_ $$2altmetric$$aaltmetric:103451863
000891651 0247_ $$2pmid$$a33828303
000891651 0247_ $$2WOS$$aWOS:000637674000001
000891651 037__ $$aFZJ-2021-01637
000891651 082__ $$a500
000891651 1001_ $$00000-0001-8071-8546$$aBorsanyi, Sz.$$b0
000891651 245__ $$aLeading hadronic contribution to the muon magnetic moment from lattice QCD
000891651 260__ $$aLondon [u.a.]$$bNature Publ. Group78092$$c2021
000891651 3367_ $$2DRIVER$$aarticle
000891651 3367_ $$2DataCite$$aOutput Types/Journal article
000891651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839702_21106
000891651 3367_ $$2BibTeX$$aARTICLE
000891651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891651 3367_ $$00$$2EndNote$$aJournal Article
000891651 520__ $$aThe standard model of particle physics describes the vast majority of experiments and observations involving elementary particles. Any deviation from its predictions would be a sign of new, fundamental physics. One long-standing discrepancy concerns the anomalous magnetic moment of the muon, a measure of the magnetic field surrounding that particle. Standard-model predictions (1) exhibit disagreement with measurements (2) that is tightly scattered around 3.7 standard deviations. Today, theoretical and measurement errors are comparable; however, ongoing and planned experiments aim to reduce the measurement error by a factor of four. Theoretically, the dominant source of error is the leading-order hadronic vacuum polarization (LO-HVP) contribution. For the upcoming measurements, it is essential to evaluate the prediction for this contribution with independent methods and to reduce its uncertainties. The most precise, model-independent determinations so far rely on dispersive techniques, combined with measurements of the cross-section of electron–positron annihilation into hadrons (3,4,5,6). To eliminate our reliance on these experiments, here we use ab initio quantum chromodynamics (QCD) and quantum electrodynamics simulations to compute the LO-HVP contribution. We reach sufficient precision to discriminate between the measurement of the anomalous magnetic moment of the muon and the predictions of dispersive methods. Our result favours the experimentally measured value over those obtained using the dispersion relation. Moreover, the methods used and developed in this work will enable further increased precision as more powerful computers become available.
000891651 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891651 588__ $$aDataset connected to CrossRef
000891651 7001_ $$00000-0003-2519-5687$$aFodor, Z.$$b1$$eCorresponding author
000891651 7001_ $$0P:(DE-HGF)0$$aGuenther, J. N.$$b2
000891651 7001_ $$00000-0001-5715-1086$$aHoelbling, C.$$b3
000891651 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b4
000891651 7001_ $$00000-0002-0032-6073$$aLellouch, L.$$b5
000891651 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b6$$ufzj
000891651 7001_ $$0P:(DE-HGF)0$$aMiura, K.$$b7
000891651 7001_ $$0P:(DE-HGF)0$$aParato, L.$$b8
000891651 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b9$$ufzj
000891651 7001_ $$0P:(DE-Juel1)177023$$aStokes, F.$$b10$$ufzj
000891651 7001_ $$0P:(DE-HGF)0$$aToth, B. C.$$b11
000891651 7001_ $$0P:(DE-Juel1)173972$$aTörök, Csaba$$b12
000891651 7001_ $$0P:(DE-HGF)0$$aVarnhorst, L.$$b13
000891651 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-021-03418-1$$n7857$$p51–55$$tNature <London>$$v593$$x1476-4687$$y2021
000891651 8564_ $$uhttps://juser.fz-juelich.de/record/891651/files/2002.12347-1.pdf$$yPublished on 2021-04-07. Available in OpenAccess from 2021-10-07.
000891651 8564_ $$uhttps://juser.fz-juelich.de/record/891651/files/s41586-021-03418-1.pdf$$yRestricted
000891651 909CO $$ooai:juser.fz-juelich.de:891651$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b6$$kFZJ
000891651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b9$$kFZJ
000891651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177023$$aForschungszentrum Jülich$$b10$$kFZJ
000891651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173972$$aForschungszentrum Jülich$$b12$$kFZJ
000891651 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891651 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891651 9141_ $$y2021
000891651 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2019$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2019$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000891651 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000891651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000891651 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000891651 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000891651 980__ $$ajournal
000891651 980__ $$aVDB
000891651 980__ $$aI:(DE-Juel1)JSC-20090406
000891651 980__ $$aI:(DE-Juel1)NIC-20090406
000891651 980__ $$aUNRESTRICTED
000891651 9801_ $$aFullTexts