001     891652
005     20240711092240.0
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 10.3390/ma14051073
|2 doi
024 7 _ |a 2128/27524
|2 Handle
024 7 _ |a 33669079
|2 pmid
024 7 _ |a WOS:000628380800001
|2 WOS
037 _ _ |a FZJ-2021-01638
082 _ _ |a 600
100 1 _ |a Dong, Zihui
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microstructure and Thermal Analysis of Metastable Intermetallic Phases in High-Entropy Alloy CoCrFeMo0.85Ni
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617958032_7594
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CoCrFeMoNi high entropy alloys (HEAs) exhibit several promising characteristics for potential applications of high temperature coating. In this study, metastable intermetallic phases and their thermal stability of high-entropy alloy CoCrFeMo0.85Ni were investigated via thermal and microstructural analyses. Solidus and liquidus temperatures of CoCrFeMo0.85Ni were determined by differential thermal analysis as 1323 °C and 1331 °C, respectively. Phase transitions also occur at 800 °C and 1212 °C during heating. Microstructure of alloy exhibits a single-phase face-centred cubic (FCC) matrix embedded with the mixture of (Co, Cr, Fe)-rich tetragonal phase and Mo-rich rhombohedron-like phase. The morphologies of two intermetallics show matrix-based tetragonal phases bordered by Mo-rich rhombohedral precipitates around their perimeter. The experimental results presented in our paper provide key information on the microstructure and thermal stability of our alloy, which will assist in the development of similar thermal spray HEA coatings.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|x 0
|f POF IV
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sergeev, Dmitry
|0 P:(DE-Juel1)159377
|b 1
700 1 _ |a Dodge, Michael F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fanicchia, Francesco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 4
|e Corresponding author
700 1 _ |a Paul, Shiladitya
|0 0000-0002-8423-313X
|b 5
700 1 _ |a Dong, Hongbiao
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.3390/ma14051073
|g Vol. 14, no. 5, p. 1073 -
|0 PERI:(DE-600)2487261-1
|n 5
|p 1073 -
|t Materials
|v 14
|y 2021
|x 1996-1944
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/891652/files/Microstructure%20and%20Thermal%20-%20Dong.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/891652/files/materials-14-01073-v2.pdf
909 C O |o oai:juser.fz-juelich.de:891652
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129765
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATERIALS : 2018
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21