000891656 001__ 891656
000891656 005__ 20240709094442.0
000891656 0247_ $$2doi$$a10.1016/j.fuel.2021.120600
000891656 0247_ $$2ISSN$$a0016-2361
000891656 0247_ $$2ISSN$$a1873-7153
000891656 0247_ $$2WOS$$aWOS:000638041100003
000891656 037__ $$aFZJ-2021-01642
000891656 082__ $$a660
000891656 1001_ $$0P:(DE-Juel1)173746$$aZhao, Xin$$b0
000891656 245__ $$aInvestigation on the condensation behavior of the trace element zinc in (Ar/H2O/HCl/H2S) gas mixtures and its practical implications in gasification-based processes for energy and power generation
000891656 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000891656 3367_ $$2DRIVER$$aarticle
000891656 3367_ $$2DataCite$$aOutput Types/Journal article
000891656 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714555989_3667
000891656 3367_ $$2BibTeX$$aARTICLE
000891656 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891656 3367_ $$00$$2EndNote$$aJournal Article
000891656 520__ $$aFuels used in combustion and gasification, such as coal, biomass and wastes, yield large amounts of trace elements, which can cause both technological and environmental concerns. This work provides an in-depth insight into the condensation behavior of the trace element zinc under gasification-like conditions in atmospheres containing the HCl and H2S trace gases. A lab-scale quartz reactor with a multi-stage cooling zone was used to determine the condensation content and species distribution of the zinc deposition in different gasification atmospheres. The Scheil-Gulliver cooling model was used to simulate the zinc condensation process, since it provides a good reference to analyze the degree of supercooling during the condensation process. Competition of the gaseous species HCl and H2S with respect to the ZnO condensation behavior has been observed. HCl leads to significant supercooling of the ZnO condensation. It is shown that this can be compensated by ZnS acting as nucleation sites for ZnO if significant amounts of H2S are present. It is further shown that there is a significant bypass effect, i.e. even after nucleation has started there is a significant amount of Zn remaining in the gas phase which significantly extends the condensation regime to lower temperatures. To visualize both effects, a H2S-temperature-transition diagram is proposed. The potential applications including the prevention of problematic depositions (slagging and fouling) and sorbent selection as well as design for removal of trace element zinc from the syngas in IGCC power plants are proposed and discussed in the light of developing clean power technologies.
000891656 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891656 588__ $$aDataset connected to CrossRef
000891656 7001_ $$0P:(DE-Juel1)145147$$aWu, Guixuan$$b1$$eCorresponding author
000891656 7001_ $$0P:(DE-Juel1)176873$$aQi, Jia$$b2
000891656 7001_ $$0P:(DE-HGF)0$$ato Baben, Moritz$$b3
000891656 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$eCorresponding author
000891656 773__ $$0PERI:(DE-600)1483656-7$$a10.1016/j.fuel.2021.120600$$gVol. 295, p. 120600 -$$p120600 -$$tFuel$$v295$$x0016-2361$$y2021
000891656 909CO $$ooai:juser.fz-juelich.de:891656$$pVDB
000891656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173746$$aForschungszentrum Jülich$$b0$$kFZJ
000891656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145147$$aForschungszentrum Jülich$$b1$$kFZJ
000891656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176873$$aForschungszentrum Jülich$$b2$$kFZJ
000891656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000891656 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891656 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891656 9141_ $$y2021
000891656 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL : 2019$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000891656 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUEL : 2019$$d2021-01-30
000891656 920__ $$lyes
000891656 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000891656 980__ $$ajournal
000891656 980__ $$aVDB
000891656 980__ $$aI:(DE-Juel1)IEK-2-20101013
000891656 980__ $$aUNRESTRICTED
000891656 981__ $$aI:(DE-Juel1)IMD-1-20101013