000891663 001__ 891663
000891663 005__ 20240708132843.0
000891663 037__ $$aFZJ-2021-01649
000891663 1001_ $$0P:(DE-HGF)0$$aHorsten, N.$$b0
000891663 1112_ $$a24th International Conference on Plasma Surface Interactions in Controlled Fusion Devices (PSI 2020)$$cvirtuell$$d2021-01-25 - 2021-01-29$$wvirtuell
000891663 245__ $$aBenchmark of EDGE2D-EIRENE fluid plasma – kinetic neutral and SOLPS-ITER fluid plasma – fluid/kinetic neutral code suites for JET L-mode plasmas
000891663 260__ $$c2021
000891663 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1617960194_8672
000891663 3367_ $$033$$2EndNote$$aConference Paper
000891663 3367_ $$2BibTeX$$aINPROCEEDINGS
000891663 3367_ $$2DRIVER$$aconferenceObject
000891663 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000891663 3367_ $$2ORCID$$aOTHER
000891663 520__ $$aBenchmark of EDGE2D-EIRENE fluid plasma–kinetic neutral and SOLPS-ITER fluid plasma –fluid/kinetic neutral codesuitesfor JETL-mode plasmasN. Horstena,b, M.Grotha, D. Hartingb, G. Corriganb, W. Dekeyserc, I. ParadelaPéreza,d,M. Blommaertc,S. Wiesene,S. Aleiferisf,b, S. Marseng,D. Borodine,E.de la Lunah,b, A.Hubere,b,J. Karhunena,b, andJET Contributors*aAalto University,Departmentof Applied Physics,Espoo, FinlandbCCFE, Culham Science Centre, Abingdon,United KingdomcKULeuven, Department of Mechanical Engineering, Leuven, BelgiumdMax-Planck-Institut für Plasmaphysik, Garching,GermanyeForschungszentrum Jülich,Institut für Energie-und Klimaforschung,Jülich,Germanyf NationalCentre for Scientific Research “Demokritos”, Fusion Technology Group, Athens, GreecegMax-Planck-Institut für Plasmaphysik, Greifswald,Germany,hLaboratorioNacional de Fusión, Madrid, Spainniels.horsten@aalto.fiFor aJET-ITER like wallL-modelow-recycling plasmafrom Ref. [1], SOLPS-ITERpredictsa10% higher particle flux and a 30% higher total energyfluxtothedivertor targetscompared to EDGE2D-EIRENE for nearly identical inputparameter settings. In this contribution,we describe the causes for these discrepanciesin low-recycling, high-recycling and detached divertor conditions.The simulationsare validated against Langmuir probe data at the divertor targetsfor an electron density scan at outer midplane separatrix.In addition, we explorethe performance ofthe spatially hybrid fluid-kinetic approachin SOLPS-ITER, where a deterministicfluid modelfor the deuteriumatoms in the plasma grid region is coupled to a kinetic Monte Carlo model in the vacuum regionsnear the main chamber wall and in the far private flux region. Prior work has proventhe accuracy of a fluid neutral approximationforion-atom charge-exchange dominated cases[2] and theCPU time reduction potentialwith at leasta factor fourby using a spatially hybrid model [3].In contrast to Ref. [3], in whichonly a simplified rectangular slab casewas considered,without explicit treatment of the molecules, we apply the hybrid model for thedeuterium atomsin arealistic JET geometry. Firstly, the non-orthogonality of the numerical grid in combination with the isotropic character of the neutral particles requires the use of a 9-point stencil [4]. Secondly, the assumption of dominant neutral flow parallel to the magnetic field due to ample ion-atom charge-exchange collisions is verified in the presence of electromagnetic drifts.Finally, thehybrid model forthe atoms is coupled to a full kinetic model for the molecules.[1] M. Groth,et al., Nuclear Fusion 53 (2013) 093016[2] N. Horsten, et al., Nuclear Fusion57(2017) 116043[3] M. Blommaert, et al.,Nuclear Materials and Energy 19 (2019) 28-33[4] W. Dekeyser, et al.,NuclearMaterials and Energy 18 (2019) 125-130*See the author list of E. Joffrin et al., accepted for publication in Nuclear Fusion Special issue 2019,
000891663 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891663 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b1
000891663 7001_ $$0P:(DE-Juel1)177840$$aHarting, D.$$b2
000891663 7001_ $$0P:(DE-HGF)0$$aCorrigan, G.$$b3
000891663 7001_ $$0P:(DE-Juel1)162424$$aDekeyser, W.$$b4
000891663 7001_ $$0P:(DE-HGF)0$$aParadela Pérez, I.$$b5
000891663 7001_ $$0P:(DE-Juel1)156199$$aBlommaert, M.$$b6
000891663 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b7$$eCorresponding author
000891663 7001_ $$0P:(DE-HGF)0$$aAleiferis, S.$$b8
000891663 7001_ $$0P:(DE-HGF)0$$aMarsen, S.$$b9
000891663 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b10
000891663 7001_ $$0P:(DE-HGF)0$$ade la Luna, E.$$b11
000891663 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b12$$ufzj
000891663 7001_ $$0P:(DE-HGF)0$$aKarhunen, J.$$b13
000891663 909CO $$ooai:juser.fz-juelich.de:891663$$pVDB
000891663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b1$$kFZJ
000891663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177840$$aForschungszentrum Jülich$$b2$$kFZJ
000891663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b7$$kFZJ
000891663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b10$$kFZJ
000891663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b12$$kFZJ
000891663 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891663 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891663 9141_ $$y2021
000891663 920__ $$lyes
000891663 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891663 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x1
000891663 980__ $$aabstract
000891663 980__ $$aVDB
000891663 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891663 980__ $$aI:(DE-Juel1)IBI-1-20200312
000891663 980__ $$aUNRESTRICTED
000891663 981__ $$aI:(DE-Juel1)IMD-2-20101013