000891668 001__ 891668
000891668 005__ 20240708133247.0
000891668 0247_ $$2doi$$a10.1016/j.ijhydene.2021.01.072
000891668 0247_ $$2ISSN$$a0360-3199
000891668 0247_ $$2ISSN$$a1879-3487
000891668 0247_ $$2Handle$$a2128/27536
000891668 0247_ $$2WOS$$aWOS:000632376400003
000891668 037__ $$aFZJ-2021-01654
000891668 082__ $$a620
000891668 1001_ $$0P:(DE-Juel1)164145$$aEngels, J.$$b0$$eCorresponding author
000891668 245__ $$aHydrogen isotope permeation through yttria coatings on Eurofer in the diffusion limited regime
000891668 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000891668 3367_ $$2DRIVER$$aarticle
000891668 3367_ $$2DataCite$$aOutput Types/Journal article
000891668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648190638_28151
000891668 3367_ $$2BibTeX$$aARTICLE
000891668 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891668 3367_ $$00$$2EndNote$$aJournal Article
000891668 520__ $$aIn fusion power plants a tritium permeation barrier is required in order to prevent the loss of the fuel. Moreover, the tritium permeation barrier is necessary to avoid that the radioactive tritium accumulates in the first wall, the cooling system, and other parts of the power plant. Oxide thin films, e.g. Al2O3, Er2O3 and Y2O3, are promising candidates as tritium permeation barrier layers. With regard to the application, this is especially true for yttrium due to its favorably short decay time after neutron activation compared to the other candidates. The Y2O3 layers with thicknesses from 100 nm to 500 nm are deposited on both sides of Eurofer substrates by RF magnetron sputter deposition. Some of the samples are additionally deposited with palladium thin films to analyse the limited regime. During the annealing in the experiments the palladium layers do not show any crack formation or delamination, verified by scanning electron microscopy. After annealing the cubic crystal structure of the Y2O3 layers is verified by X-ray diffraction. The cubic phase contains a small amount of a monoclinic phase, which is eliminated after the permeation measurements. The permeation reduction factors of the samples are determined in gas-driven deuterium permeation experiments. A permeation reduction of 5000 of the yttria thin film is verified. The diffusion limited regime is identified by the pressure dependence of the permeation measurement and by permeation experiments with the palladium top layers on the Y2O3 thin films. Furthermore, the activation energy of the permeation through the yttria thin films is determined. Pre-annealing times for more than 70 h of the Y2O3 thin films and permeation measurements with temperature cycles for 20 days are performed to show the stability of the permeation flux and hence the microstructure of the barrier layers. Measurement times at each constant temperature level of more than 25 h are required for the stabilization of each permeation flux to a constant value. The permeation measurement setup is enhanced to enable a continuously running equipment for these measurement times.
000891668 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891668 588__ $$aDataset connected to CrossRef
000891668 7001_ $$0P:(DE-Juel1)157772$$aHouben, Anne$$b1
000891668 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b2
000891668 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.01.072$$gVol. 46, no. 24, p. 13142 - 13149$$n24$$p13142 - 13149$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000891668 8564_ $$uhttps://juser.fz-juelich.de/record/891668/files/Postprint_Houben_Hydrogenisotop%20ep%20ermeation.pdf$$yPublished on 2021-02-18. Available in OpenAccess from 2023-02-18.
000891668 909CO $$ooai:juser.fz-juelich.de:891668$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b1$$kFZJ
000891668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b2$$kFZJ
000891668 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891668 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891668 9141_ $$y2021
000891668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891668 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891668 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2019$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891668 920__ $$lyes
000891668 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891668 9801_ $$aFullTexts
000891668 980__ $$ajournal
000891668 980__ $$aVDB
000891668 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891668 980__ $$aUNRESTRICTED
000891668 981__ $$aI:(DE-Juel1)IFN-1-20101013