000891683 001__ 891683
000891683 005__ 20230310131329.0
000891683 0247_ $$2doi$$a10.1016/j.matt.2020.12.008
000891683 0247_ $$2ISSN$$a2590-2385
000891683 0247_ $$2ISSN$$a2590-2393
000891683 0247_ $$2Handle$$a2128/27539
000891683 0247_ $$2altmetric$$aaltmetric:97199337
000891683 0247_ $$2WOS$$aWOS:000632644900004
000891683 037__ $$aFZJ-2021-01666
000891683 082__ $$a600
000891683 1001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b0$$eCorresponding author
000891683 245__ $$aMultiple polarization orders in individual twinned colloidal nanocrystals of centrosymmetric HfO2
000891683 260__ $$a[New York, NY]$$bElsevier$$c2021
000891683 3367_ $$2DRIVER$$aarticle
000891683 3367_ $$2DataCite$$aOutput Types/Journal article
000891683 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617967938_8672
000891683 3367_ $$2BibTeX$$aARTICLE
000891683 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891683 3367_ $$00$$2EndNote$$aJournal Article
000891683 520__ $$aSpontaneous polarization is essential for ferroelectric functionality in non-centrosymmetric crystals. High-integration-density ferroelectric devices require the stabilization of polarization in small volumes. Here, atomic-resolution transmission electron microscopy imaging reveals that twinning gives rise to multiple polarization orders without symmetry breaking in colloidal nanocrystals of HfO2. The polarization orders are associated with sub-nanometer ferroelectric and antiferroelectric phases. The minimum size limit of the ferroelectric phase is found to be ∼4 nm3. Density functional theory calculations indicate that transformations between the ferroelectric and antiferroelectric phases are energetically possible. This work provides a route toward applications of HfO2 nanocrystals in information storage at densities that are more than an order of magnitude higher than the scaling limit defined by the nanocrystal size. Our results on the formation of twinning-induced polarization orders without symmetry breaking may provide general guidance for the discovery of new ferroelectric phases in ionic compounds that are not restricted to oxides.
000891683 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000891683 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000891683 588__ $$aDataset connected to CrossRef
000891683 7001_ $$0P:(DE-HGF)0$$aGroh, Christoph$$b1
000891683 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b2
000891683 7001_ $$0P:(DE-Juel1)173830$$aOhlerth, Thorsten$$b3
000891683 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b4
000891683 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b5
000891683 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6
000891683 773__ $$0PERI:(DE-600)3015776-6$$a10.1016/j.matt.2020.12.008$$gVol. 4, no. 3, p. 986 - 1000$$n3$$p986 - 1000$$tMatter$$v4$$x2590-2385$$y2021
000891683 8564_ $$uhttps://juser.fz-juelich.de/record/891683/files/2009.12972.pdf$$yPublished on 2021-01-06. Available in OpenAccess from 2022-01-06.
000891683 909CO $$ooai:juser.fz-juelich.de:891683$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b0$$kFZJ
000891683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b2$$kFZJ
000891683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000891683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
000891683 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891683 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891683 9141_ $$y2021
000891683 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000891683 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891683 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891683 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-18
000891683 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000891683 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000891683 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000891683 920__ $$lyes
000891683 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891683 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000891683 980__ $$ajournal
000891683 980__ $$aVDB
000891683 980__ $$aUNRESTRICTED
000891683 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891683 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000891683 9801_ $$aFullTexts