001     891683
005     20230310131329.0
024 7 _ |a 10.1016/j.matt.2020.12.008
|2 doi
024 7 _ |a 2590-2385
|2 ISSN
024 7 _ |a 2590-2393
|2 ISSN
024 7 _ |a 2128/27539
|2 Handle
024 7 _ |a altmetric:97199337
|2 altmetric
024 7 _ |a WOS:000632644900004
|2 WOS
037 _ _ |a FZJ-2021-01666
082 _ _ |a 600
100 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 0
|e Corresponding author
245 _ _ |a Multiple polarization orders in individual twinned colloidal nanocrystals of centrosymmetric HfO2
260 _ _ |a [New York, NY]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617967938_8672
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spontaneous polarization is essential for ferroelectric functionality in non-centrosymmetric crystals. High-integration-density ferroelectric devices require the stabilization of polarization in small volumes. Here, atomic-resolution transmission electron microscopy imaging reveals that twinning gives rise to multiple polarization orders without symmetry breaking in colloidal nanocrystals of HfO2. The polarization orders are associated with sub-nanometer ferroelectric and antiferroelectric phases. The minimum size limit of the ferroelectric phase is found to be ∼4 nm3. Density functional theory calculations indicate that transformations between the ferroelectric and antiferroelectric phases are energetically possible. This work provides a route toward applications of HfO2 nanocrystals in information storage at densities that are more than an order of magnitude higher than the scaling limit defined by the nanocrystal size. Our results on the formation of twinning-induced polarization orders without symmetry breaking may provide general guidance for the discovery of new ferroelectric phases in ionic compounds that are not restricted to oxides.
536 _ _ |a 535 - Materials Information Discovery (POF4-535)
|0 G:(DE-HGF)POF4-535
|c POF4-535
|f POF IV
|x 0
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Groh, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 2
700 1 _ |a Ohlerth, Thorsten
|0 P:(DE-Juel1)173830
|b 3
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 4
700 1 _ |a Simon, Ulrich
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 6
773 _ _ |a 10.1016/j.matt.2020.12.008
|g Vol. 4, no. 3, p. 986 - 1000
|0 PERI:(DE-600)3015776-6
|n 3
|p 986 - 1000
|t Matter
|v 4
|y 2021
|x 2590-2385
856 4 _ |u https://juser.fz-juelich.de/record/891683/files/2009.12972.pdf
|y Published on 2021-01-06. Available in OpenAccess from 2022-01-06.
909 C O |o oai:juser.fz-juelich.de:891683
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130824
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21