001     891687
005     20240708133247.0
037 _ _ |a FZJ-2021-01670
100 1 _ |a Ding, F.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 24th International Conference on Plasma Surface Interactions in Controlled Fusion Devices (PSI 2020)
|c virtuell
|d 2021-01-25 - 2021-01-29
|w virtuell
245 _ _ |a Investigation of divertor W source and its control in EAST H mode plasmas
260 _ _ |c 2021
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1643695084_24165
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Investigation of divertor W source and its control in EAST H mode plasmas F. Ding1*, X. H. Chen1, L. Wang1, R. Ding1, S. Brezinsek2, L. Zhang1, Z. H. Hu1, Q. Zhang1, Q. Ma1, D.W. Ye1, Y. Luo1, Z.T. Zhang1, Y. W. Sun1, G.-N. Luo1 and the EAST team1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China 2 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik,Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany*E-mail: fding@ipp.ac.cnAn effective control of W erosion at the wall is not only a concern for the lifetime of Plasma-facing Material (PFM), but also a prerequisite for maintaining a low W concentration in the plasma core. In high confinement plasma discharges, a large amount of energetic particles in pedestal are ejected onto divertor targets in a timescale less than 1 ms during the burst of edge localized mode (ELM), even penetrating the detached divertor edge and inducing significant W erosion at the divertor targets [1], which contributes most of the W source in H-mode plasma and needs to be well understood and controlled. In EAST, intra-ELM W sources are resolved and studied via photo multiplier tube (PMT) measurements with optical filters. The non-W spectral emissions passing through the narrowband filter were deducted via a cross-calibration with spectrometer system with high spectral resolution. It is observed that the intra-ELM W erosion has a linear dependence on the plasma energy loss during each ELM burst when the carbon content in plasma is maintained at a relatively low level. However, high carbon content in plasma can alter this dependence by inducing stronger W sputtering even with a low ELM energy loss. In helium plasma discharges, the ELM-induced W sputtering behaves more like those in deuterium (D) plasmas with high C content, indicating the effect of main ion mass. ELM frequency effects on divertor W source are addressed in two different regimes, the natural ELMs and the resonant magnetic perturbation (RMP) mitigated ELMs. It is found that intra-ELM W erosion rate with natural ELMs can roll over after a certain ELM frequency, that is, firstly rise and then drop with the increase of ELM frequency, while a continuous growth of intra-ELM W erosion rate is observed with RMP-mitigated ELMs from around 40 Hz to 300 Hz. These should be the major reason for the indistinctive mitigation of total W source, including intra- and inter-ELM W sources, with the increase of ELM frequency Moreover, the asymmetric distribution of W source in the divertor during H mode discharges are investigated both poloidally and toroidally. The ELM burst can induce an obviously stronger W erosion at outer divertor than at inner divertor, which can be influenced by the toroidal magnetic field direction, plasma density as well as the ELM-induced plasma energy loss. The toroidal non-axisymmetric distribution at the outer divertor can be observed by rotating RMP field toroidally, characterized by local W erosion peaks in toroidal direction. The two poloidally separated W sources at the divertor targets exhibit different responses to the neon seeding, mitigated around the strike point, while enhanced in the outer one, which could enhance the leakage of W impurity into main plasma.[1] S. Brezinsek et al., Nucl. Fusion 59, 096035 (2019).
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
700 1 _ |a Chen, X. H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, L.
|b 2
700 1 _ |a Ding, Rui
|0 P:(DE-Juel1)184709
|b 3
|e Corresponding author
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 4
700 1 _ |a Zhang, L.
|b 5
700 1 _ |a Hu, Z. H.
|0 P:(DE-Juel1)187004
|b 6
700 1 _ |a Zhang, Q.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ma, Q.
|b 8
700 1 _ |a Ye, D. W.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Luo, Y.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zhang, Z. T.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Sun, Y. W.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Luo, G.-N.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a team, the EAST
|0 P:(DE-HGF)0
|b 14
909 C O |p VDB
|o oai:juser.fz-juelich.de:891687
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)187004
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21