000891694 001__ 891694
000891694 005__ 20240712100844.0
000891694 0247_ $$2doi$$a10.1175/JAS-D-20-0247.1
000891694 0247_ $$2ISSN$$a0022-4928
000891694 0247_ $$2ISSN$$a0095-9634
000891694 0247_ $$2ISSN$$a1520-0469
000891694 0247_ $$2ISSN$$a2163-5374
000891694 0247_ $$2Handle$$a2128/27714
000891694 0247_ $$2altmetric$$aaltmetric:103771082
000891694 0247_ $$2WOS$$aWOS:000641862000021
000891694 037__ $$aFZJ-2021-01675
000891694 082__ $$a550
000891694 1001_ $$0P:(DE-HGF)0$$aStrelnikova, Irina$$b0$$eCorresponding author
000891694 245__ $$aSeasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54° and 69°N
000891694 260__ $$aBoston, Mass.$$bAmerican Meteorological Soc.$$c2021
000891694 3367_ $$2DRIVER$$aarticle
000891694 3367_ $$2DataCite$$aOutput Types/Journal article
000891694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619687137_10488
000891694 3367_ $$2BibTeX$$aARTICLE
000891694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891694 3367_ $$00$$2EndNote$$aJournal Article
000891694 520__ $$aWe present gravity wave climatologies based on 7 years (2012–18) of lidar and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures and reanalysis data at 54° and 69°N in the altitude range 30–70 km. We use 9452 (5044) h of lidar observations at Kühlungsborn [Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR)]. Filtering according to vertical wavelength (λz < 15 km) or period (τ < 8 h) is applied. Gravity wave potential energy densities (GWPED) per unit volume (EpV) and per unit mass (Epm) are derived. GWPED from reanalysis are smaller compared to lidar. The difference increases with altitude in winter and reaches almost two orders of magnitude around 70 km. A seasonal cycle of EpV with maximum values in winter is present at both stations in nearly all lidar and SABER measurements and in reanalysis data. For SABER and for lidar (with λ < 15 km) the winter/summer ratios are a factor of ~2–4, but are significantly smaller for lidar with τ < 8 h. The winter/summer ratios are nearly identical at both stations and are significantly larger for Epm compared to EpV. Lidar and SABER observations show that EpV is larger by a factor of ~2 at Kühlungsborn compared to ALOMAR, independent of season and altitude. Comparison with mean background winds shows that simple scenarios regarding GW filtering, etc., cannot explain the Kühlungsborn–ALOMAR differences. The value of EpV decreases with altitude in nearly all cases. Corresponding EpV-scale heights from lidar are generally larger in winter compared to summer. Above ~55 km, EpV in summer is almost constant with altitude at both stations. The winter–summer difference of EpV scale heights is much smaller or absent in SABER and in reanalysis data.
000891694 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891694 588__ $$aDataset connected to CrossRef
000891694 7001_ $$0P:(DE-HGF)0$$aAlmowafy, Marwa$$b1
000891694 7001_ $$0P:(DE-HGF)0$$aBaumgarten, Gerd$$b2
000891694 7001_ $$0P:(DE-HGF)0$$aBaumgarten, Kathrin$$b3
000891694 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b4$$ufzj
000891694 7001_ $$0P:(DE-HGF)0$$aGerding, Michael$$b5
000891694 7001_ $$0P:(DE-HGF)0$$aLübken, Franz-Josef$$b6
000891694 773__ $$0PERI:(DE-600)2025890-2$$a10.1175/JAS-D-20-0247.1$$gVol. 78, no. 4, p. 1359 - 1386$$n4$$p1359 - 1386$$tJournal of the atmospheric sciences$$v78$$x1520-0469$$y2021
000891694 8564_ $$uhttps://juser.fz-juelich.de/record/891694/files/%5B15200469%20-%20Journal%20of%20the%20Atmospheric%20Sciences%5D%20Seasonal%20Cycle%20of%20Gravity%20Wave%20Potential%20Energy%20Densities%20from%20Lidar%20and%20Satellite%20Observations%20at%2054%C2%B0%20and%2069%C2%B0N.pdf$$yOpenAccess
000891694 909CO $$ooai:juser.fz-juelich.de:891694$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000891694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b4$$kFZJ
000891694 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000891694 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891694 9141_ $$y2021
000891694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000891694 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000891694 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891694 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ATMOS SCI : 2019$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891694 920__ $$lyes
000891694 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000891694 9801_ $$aFullTexts
000891694 980__ $$ajournal
000891694 980__ $$aVDB
000891694 980__ $$aUNRESTRICTED
000891694 980__ $$aI:(DE-Juel1)IEK-7-20101013
000891694 981__ $$aI:(DE-Juel1)ICE-4-20101013