001     891694
005     20240712100844.0
024 7 _ |a 10.1175/JAS-D-20-0247.1
|2 doi
024 7 _ |a 0022-4928
|2 ISSN
024 7 _ |a 0095-9634
|2 ISSN
024 7 _ |a 1520-0469
|2 ISSN
024 7 _ |a 2163-5374
|2 ISSN
024 7 _ |a 2128/27714
|2 Handle
024 7 _ |a altmetric:103771082
|2 altmetric
024 7 _ |a WOS:000641862000021
|2 WOS
037 _ _ |a FZJ-2021-01675
082 _ _ |a 550
100 1 _ |a Strelnikova, Irina
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Seasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54° and 69°N
260 _ _ |a Boston, Mass.
|c 2021
|b American Meteorological Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619687137_10488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present gravity wave climatologies based on 7 years (2012–18) of lidar and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures and reanalysis data at 54° and 69°N in the altitude range 30–70 km. We use 9452 (5044) h of lidar observations at Kühlungsborn [Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR)]. Filtering according to vertical wavelength (λz < 15 km) or period (τ < 8 h) is applied. Gravity wave potential energy densities (GWPED) per unit volume (EpV) and per unit mass (Epm) are derived. GWPED from reanalysis are smaller compared to lidar. The difference increases with altitude in winter and reaches almost two orders of magnitude around 70 km. A seasonal cycle of EpV with maximum values in winter is present at both stations in nearly all lidar and SABER measurements and in reanalysis data. For SABER and for lidar (with λ < 15 km) the winter/summer ratios are a factor of ~2–4, but are significantly smaller for lidar with τ < 8 h. The winter/summer ratios are nearly identical at both stations and are significantly larger for Epm compared to EpV. Lidar and SABER observations show that EpV is larger by a factor of ~2 at Kühlungsborn compared to ALOMAR, independent of season and altitude. Comparison with mean background winds shows that simple scenarios regarding GW filtering, etc., cannot explain the Kühlungsborn–ALOMAR differences. The value of EpV decreases with altitude in nearly all cases. Corresponding EpV-scale heights from lidar are generally larger in winter compared to summer. Above ~55 km, EpV in summer is almost constant with altitude at both stations. The winter–summer difference of EpV scale heights is much smaller or absent in SABER and in reanalysis data.
536 _ _ |a 211 - Die Atmosphäre im globalen Wandel (POF4-211)
|0 G:(DE-HGF)POF4-211
|c POF4-211
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Almowafy, Marwa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baumgarten, Gerd
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baumgarten, Kathrin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 4
|u fzj
700 1 _ |a Gerding, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lübken, Franz-Josef
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1175/JAS-D-20-0247.1
|g Vol. 78, no. 4, p. 1359 - 1386
|0 PERI:(DE-600)2025890-2
|n 4
|p 1359 - 1386
|t Journal of the atmospheric sciences
|v 78
|y 2021
|x 1520-0469
856 4 _ |u https://juser.fz-juelich.de/record/891694/files/%5B15200469%20-%20Journal%20of%20the%20Atmospheric%20Sciences%5D%20Seasonal%20Cycle%20of%20Gravity%20Wave%20Potential%20Energy%20Densities%20from%20Lidar%20and%20Satellite%20Observations%20at%2054%C2%B0%20and%2069%C2%B0N.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891694
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129117
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ATMOS SCI : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21