000891716 001__ 891716
000891716 005__ 20240625095123.0
000891716 0247_ $$2doi$$a10.1002/wcms.1535
000891716 0247_ $$2ISSN$$a1759-0876
000891716 0247_ $$2ISSN$$a1759-0884
000891716 0247_ $$2Handle$$a2128/28746
000891716 0247_ $$2altmetric$$aaltmetric:104717740
000891716 0247_ $$2WOS$$aWOS:000638549900001
000891716 037__ $$aFZJ-2021-01690
000891716 082__ $$a540
000891716 1001_ $$0P:(DE-Juel1)168432$$aBolnykh, Viacheslav$$b0
000891716 245__ $$aExpanding the boundaries of ligand–target modeling by exascale calculations
000891716 260__ $$aMalden, MA$$bWiley-Blackwell$$c2021
000891716 3367_ $$2DRIVER$$aarticle
000891716 3367_ $$2DataCite$$aOutput Types/Journal article
000891716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637826942_10843
000891716 3367_ $$2BibTeX$$aARTICLE
000891716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891716 3367_ $$00$$2EndNote$$aJournal Article
000891716 520__ $$aMolecular simulations and molecular docking are widely used tools to investigate ligand/target interactions and in drug design. High‐performance computing (HPC) is boosting both the accuracy and predictive power of these approaches. With the advent of exascale computing, HPC may become standardly applied in many drug design campaigns and pharmacological applications. This review discusses how innovative HPC algorithms and hardware are being exploited in current simulations and docking codes, pointing also at some of the limitations of these approaches. The focus is on technical aspects which might not be all that familiar to the computational pharmacologist.
000891716 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891716 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000891716 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x2
000891716 536__ $$0G:(GEPRIS)291198853$$aDFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - $$c291198853$$x3
000891716 588__ $$aDataset connected to CrossRef
000891716 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1
000891716 7001_ $$0P:(DE-HGF)0$$aRothlisberger, Ursula$$b2
000891716 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$eCorresponding author
000891716 773__ $$0PERI:(DE-600)2599565-0$$a10.1002/wcms.1535$$n4$$pe1535$$tWiley interdisciplinary reviews / Computational Molecular Science$$v11$$x1759-0884$$y2021
000891716 8564_ $$uhttps://juser.fz-juelich.de/record/891716/files/wcms.1535.pdf$$yOpenAccess
000891716 8767_ $$d2021-04-12$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000891716 909CO $$ooai:juser.fz-juelich.de:891716$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000891716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168432$$aForschungszentrum Jülich$$b0$$kFZJ
000891716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b1$$kFZJ
000891716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b3$$kFZJ
000891716 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891716 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000891716 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x2
000891716 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000891716 9141_ $$y2021
000891716 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891716 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891716 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bWIRES COMPUT MOL SCI : 2019$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000891716 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891716 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWIRES COMPUT MOL SCI : 2019$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891716 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891716 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000891716 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000891716 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000891716 980__ $$ajournal
000891716 980__ $$aVDB
000891716 980__ $$aI:(DE-Juel1)IAS-5-20120330
000891716 980__ $$aI:(DE-Juel1)INM-9-20140121
000891716 980__ $$aI:(DE-Juel1)JSC-20090406
000891716 980__ $$aAPC
000891716 980__ $$aUNRESTRICTED
000891716 9801_ $$aAPC
000891716 9801_ $$aFullTexts