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1 | INTRODUCTION

Modeling plays a key role in drug discovery and design."* Developing a new drug molecule can cost up to $2.6 billion:
the use of computational approaches may decrease such costs by 30%, as well as the research time by several months.?
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The computational investigations of target/ligand complexes may help discover drug leads, compounds with at least
micromolar affinity for their targets.*” In particular, computational structure-based drug design (CSBDD) has played a
significant role in discovering many FDA-approved drugs that reached the consumer market.® !

Computational methods of ligand/target interactions include structure-based virtual screening (SBVS) and molecu-
lar dynamics (MD) simulations.***

SBVS docks large libraries of small molecules into the binding site of a selected therapeutic target.'> Using ad hoc
scoring functions, it predicts ligand binding poses, ranking their potency according to their relative binding affinities.
This allows to identify quickly potential drug lead candidates,'® lowering greatly the number of molecules to be tested
experimentally.'’ "> For instance, the SBVS campaign against the M1 Acetylcholine Receptor, a known target against
dementia, yielded approximately 1000 putative hits, including 1-(N-substituted piperidin-4-yl) benzimidazolone deriva-
tives. These turned out to be orally administered, central nervous system penetrant, potent agonists of the receptor.'’
Another example is Biogen Idec's SBVS on the transforming growth factor-p1 receptor kinase.?® The company identified
87 drug candidates, the best hit being identical in structure to the lead compound discovered through traditional high
throughput approaches at Eli Lilly.>* Thus, SBVS, involving diminished costs and workload, turned out to identify the
same lead as a full-scale experimental High Throughput Screening (HTS).**

The second approach predicts more accurately, but also at a much larger computational cost, structural properties.
In addition, and most importantly, it may provide the energetics of target proteins in complex with ligands.*® Thus, it
works very well as a refinement of SBVS. In most cases, it is based on atomistic parametrized empirical potential energy
functions or force fields.>’ It can routinely run systems of 10> atoms for ps timescales. MD-based ligand binding free
energies'>***? allow to predict potency and residence times of drugs.>®**~*> Examples of the impact of MD in pharma-
cology include (but are by no means limited to) the development of the FDA-approved HIV-1 lifesaving drugs nelfinavir
and raltegravir,>® the ongoing SARS-CoV-2 research®’~*° and the development of a variety of anti-cancer drugs.*"**

The development of supercomputers, combined with the power of parallel algorithms, can greatly boost the investi-
gations of ligand/target complexes and CSBDD.*' On one hand, this improves the global optimization procedures
required in docking algorithms and allows to consider large conformational ensembles as well as the use of more accu-
rate scoring functions.** On the other hand, in MD simulations, HPC not only allows to extend the system sizes, time
scales, and accuracy** ™ but it also fosters the use of hybrid approaches such as quantum mechanics/molecular
mechanics (QM/MM) simulations.*” These are particularly useful to investigate bond forming/breaking processes such
as in the case of covalent inhibitor binding transition-metal based drugs**** and enzymatic reactions.*® The latter can
be used as a basis to design transition state-analog inhibitors.”® Furthermore, although generally of much higher com-
putational cost, QM/MM codes may scale better than force field-based MD with the number of processors.>"

Prompted by the importance of HPC for modern computational biochemistry and pharmacology, we have here com-
piled a review focusing on technical aspects of high-performance computing (HPC) aspects particularly relevant for MD
and molecular docking. Obviously, because we deal mostly with methods rather than applications, the material can be
useful also for readers interested in the use of these techniques for applications other than those dealt with here.

The review is organized as follows. Section 2 provides some basic concepts of HPC. Their implementation in MD
and docking, along with specific examples of force-field-based and QM/MM codes, is offered in Section 3 together with
a description of their actual implementation in specific HPC codes. Some of the major limitations of docking and
molecular simulation approaches are summarized. Section 4 draws some conclusions and provides an outlook.

2 | HPC: THE BASICS

We survey general HPC techniques that may be applied to maximize the performance of a variety of applications,
including (but not limited to) MD and molecular docking. Let us start with some key definitions.

The computational complexity of an algorithm or a problem is measured in FLOPs, which stands for Floating-Point
Operations. The performance of a hardware or an algorithm is measured by the number of FLOPs executed per second.
This can be obtained by dividing the total amount of FLOPs in the task by the time needed to perform the calculation:

FLOPs

FLOPS =
t(sec)
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Many biomolecular simulations may routinely reach the order of zetta (10*') FLOPs.>* If run on a single PC (whose
computational power is few tera [10'%] FLOPS), these would take decades to solve (Serial Performance, Section 2.1).
Therefore, optimizing and distributing the computational effort so that it can be performed simultaneously is crucial.
This also applies to molecular docking because of the immensely large amount of library compounds and possible dock-
ing poses that need to be scored. HPC (Section 2.2) is a key technique in this respect.

2.1 | Single-node computations
2.1.1 | Serial performance

Modern Central Processing Units (CPUs) provide a wide range of tools designed to maximize the performance of an
algorithm, executed by a single CPU even without any parallelization (serial performance). Particularly important here
is the “vectorization”: vector units (SIMD, Single Instruction, Multiple Data).”* These allow to perform the same opera-
tion on multiple data elements instead of just one. To illustrate this, let us consider an example of the addition of two
vectors each containing N elements (Figure 1(a)). Completing such an addition requires N operations. These take a frac-
tion of ns. With N = 10,000,000, it may take 2 s to perform such an addition—an unfeasible time as this operation
should be performed thousands or millions of times. In contrast, vectorization allows us to perform up to 32 additions
(depending on the CPU and the precision) with a single instruction (Figure 1(b)): rendering the calculation much more
feasible.

2.1.2 | Multi-threading

Modern CPUs contain several (from 2 to few dozen) independent processing units (or cores). The latter may execute
simultaneously 2-4 threads (smallest independent sets of program instructions). The parallel execution of the code is
then enabled by multi-threading across all the cores. In multi-CPU systems, many threads are further distributed
between all the CPUs available in the computer.
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FIGURE 1 Addition with scalar operations (a) and with SIMD (b). Schematic of a computer system with multi-core CPU and with an
accelerator (c). Schematic of a CPU (d) and a GPU (e) architecture
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A few hundreds threads operating on a single CPU and a full utilization of vector units may speed-up calculations
by up to three orders of magnitude.

2.1.3 | Accelerated computing

Graphical Processing Units or GPUs feature many very weak cores (Figure 1(c-e)), unlike CPUs, characterized by a
small number of very powerful cores. This makes GPUs very useful tools for highly parallelizable applications, such as
molecular simulations and docking. An alternative approach to accelerate calculations is through the use of Field Pro-
grammable Gate Arrays (FPGAs) that implement a specific algorithm on a hardware level. This avoids loading the pro-
gram from the memory and it allows for optimal hardware implementation, greatly speeding up calculations relative to
CPUs. Modern FPGAs can be reprogrammed on-the-fly, allowing them to be used as co-processors.>*

2.2 | Parallel computing

The main idea here is to split the workload between multiple computational units in the form of independent com-
puters connected via the Internet (Figure 2(a)) or parts of a large installation (compute cluster) joined by a local high-
speed network (Figure 2(b)). The first approach is the foundation of a so-called distributed computing network, whereas
the second one results in cluster or supercomputing.

Distributed systems represent a range of possible options: grid, cloud, and volunteer computing. They typically con-
sist of a large number of (possibly) physically separated client machines and a coordinator node. The latter is responsi-
ble for distributing the computational workload between the clients. In a computer grid, a set of possibly heterogeneous
clients may be designed to perform different types of tasks (depending on the way the coordinator is distributing the
workload). In the case of a computational cloud, several clients (situated at the same or different locations) are con-
nected to form a virtual “computer” with significantly more resources. Unlike the grid computers, clouds are typically
more homogeneous in terms of hardware and tend to be more tightly coupled. Finally, volunteer computing projects
like folding@home (https://foldingathome.org/) unite a large number of commodity PCs voluntarily connected by their
users to a computational network. These represent a highly heterogeneous system with extreme possible hardware vari-
ability but they offer the benefit of low cost combined with high throughput and, in some cases, may exhibit collective
performance higher than the most powerful supercomputers.

Clusters instead, connect a large number of relatively powerful computers (called nodes) with a high-speed and
low-latency network fabric to create a localized integrated system. Such systems offer a huge amount of computational
resources with very fast communication between the nodes. As such, they lie at the foundation of HPC.
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FIGURE 2 Schematic representation of a distributed network system (a) and a compute cluster (b)
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Problems with little to no dependency between computational tasks (embarrassingly parallel problems) can be trivi-
ally distributed across the nodes. They exhibit a linearly scaling behavior. In most cases, however, the nodes need to
exchange data. They do so indirectly, through a message passing mechanism, primarily the Message Passing Interface
(MPI>®). The process takes a few ps or more,”® three or more orders of magnitude longer than the CPU clock cycle.
Good scaling with the number of nodes is then achieved by hiding data exchange behind the computation (“over-
lapping” of computation with communication) or by minimizing the frequency of data exchange.

3 | HPC: APPLICATIONS

This section introduces very succinctly MD and SBVS, concentrating on their HPC aspects. For in-depth discussion of
MD and docking methods, the reader is referred to a variety of excellent textbooks and reviews.?”-**>7-60

3.1 | Molecular dynamics
3.1.1 | Introduction: Predictive power of MD and its limitations

All atom MD has revealed itself as a very valuable tool to study structure, dynamics, spectroscopic properties, and ener-
getics of biological systems, including those of pharmaceutical relevance. The biomolecules are investigated here in
explicit solvent. MD solves numerically Newton's second law, assuming that one has a suitable interatomic potential. In
most applications, an effective potential (or force field) is used, leading to great computational efficiency. Nowadays,
force field-based MD can routinely cover microsecond time scales for systems containing a few dozens or even hundreds
of thousands of atoms. However, a variety of pharmacologically relevant processes, from enzymatic reactions,” % to
photochemistry-based processes®”® and metal-based drug/target interactions”®”? can often not be described with standard
potentials. For some of the aforementioned cases, one can conveniently use modified force fields.”*”® These however might
not be transferable to other systems. A more general description can be provided by an explicit quantum mechanical
(QM) treatment of the electronic degrees of freedom. The way one can simulate biological systems at the QM level may vary
widely. To treat entire biological systems (often in the range of several hundreds of thousands of atoms), one can resort to
(semi-)empirical methods (e.g., INDO”’ or EVB’®). In this way, one can reach relatively long-time scales, with remarkable
accuracy. These methods require system-dependent parametrization and they may not be applied in all cases (for instance,
most semiempirical methods encounter difficulties in describing transition metal ions’**). Approaches based on first-
principles QM have a broader scope and can be applied to virtually any system, although they come at a much higher com-
putational cost. For this reason, they are rarely able to describe the whole biological system (e.g., a protein in water). The
method of choice is then Quantum Mechanical/Molecular Mechanical (QM/MM)-based MD. Its relevance for complex sys-
tems has been recognized by the Nobel prize in Chemistry in 2013.*” Here, one embeds the region treated at the QM level
(e.g., an enzymatic active site) in the biomolecular frame and the solvent, treated with effective potentials. Most often, den-
sity functional theory (DFT), a method roughly as expensive as Hartree-Fock but including electron correlation,”’ is used to
treat the QM part.

The predictive power of both force field- and QM/MM-based MD simulations is affected by two major issues. First, the
configuration space sampling should be sufficient enough so that the results approximate an equilibrium distribution. Only
then, the machinery of statistical mechanics can be applied, properties such as binding affinities can be calculated and
proper comparison with in vitro experiments, which measure equilibrium properties, can be made. This issue is even more
stringent in the case of QM/MM-based MD. Specialized hardware®! or advanced simulations methods (such as enhanced
sampling®) can alleviate the sampling problem. Although such advanced methods constitute excellent tools to study target/
protein interactions, one may require some training before successfully applying them in the drug design field.

The second key issue is the quality of the interatomic potential. Standard biomolecular force-fields, widely used in
CSBDD, are parametrized to reproduce a subset of experimental data, necessarily limiting their domain of applicabil-
ity.* They neglect polarization effects and charge transfer, which may play a role in ligand/target interactions.** In
QM/MM simulations, DFT is a computationally efficient method to treat fairly large systems with a good accuracy but
that it can be difficult to attain chemical accuracy especially for transition states and systems with pronounced
multireference character. One should keep these limitations in mind when using MD to predict ligand poses and
affinities.
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3.1.2 | HPC approaches

HPC parallelizes the computation of forces—the most expensive calculation in force-field, and, even more, QM/MM
simulations. The numerical integration of the equations of motion can be done in a distributed way, too. The most com-
mon way of distributing computations in MD is the so-called Domain Decomposition (DD). It splits the simulation box
into a set of smaller domains. Each of these domains is then assigned to a separate computational unit (node/task/
thread as described in the previous section). In this way, the computational effort needed to perform a single time step
is divided among all of the units involved in a simulation. The benefit of DD is the reduced memory consumption per
computational unit (as they have to store only part of the whole system) and relatively low communication overhead.
The DD type is defined by the shape of the subdomain. Typically, in MD simulations three types of DD can be found:
(a) “Slab” DD—where the system is split along one dimension (Figure 3(a)); (b) “Pencil” DD—the system is split along
two dimensions (Figure 3(b)); or (c) “Volumetric” DD—the system is split into a set of 3D domains along all the dimen-
sions (Figure 3(c)). The optimal type of DD is dependent on the type of problem one is trying to solve. Typically, DDs of
higher dimensions result in a better scaling performance.

3.1.3 | Examples
We describe here two codes, which differ in the interatomic potential used, from force fields (parametrized empirical
potential energy functions)®’ to QM/MM.*” Some examples of HPC-based MD codes may be found in Table 1. Here we

focus on the widely used GROMACS code®” as a representative case. Similar techniques may be found in other MD soft-
ware packages.

(a) (b) (©)

FIGURE 3 Representation of 1D (a), 2D (b), and 3D (c) DD approaches

TABLE 1 Major force-field-based and DFT-based MD programs. The name, the level of theory, the type of parallelization, and a link to
the code are provided

Name Level of theory Parallelization Link

GROMACS MM OpenMP/MPI/GPU https://www.gromacs.org/

AMBER MM OpenMP/MPI/GPU https://ambermd.org/

LAMMPS MM OpenMP/MPI/GPU https://lammps.sandia.gov/

Orca QM MPI https://orcaforum.kofo.mpg.de/app.php/portal
CPMD QM OpenMP/MPI/GPU(experimental) https://www.cpmd.org/wordpress/

CP2K QM OpenMP/MPI/GPU https://www.cp2k.org/

TeraChem QM GPU http://www.petachem.com/products.html
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GROMACS: A force-field-based MD code. This is a force-field-based MD code with high level of performance, free
license, and an active developer community. The heterogeneous (combining, threads, MPI, and GPUs, see Sec-
tions 2.1.2., 2.1.3 and 2.2) parallelization strategy of GROMACS enables it to reach the limit of approximately 1 ms per
time step for systems containing 100,000-1,000,000 atoms.®® This strategy involves 3D DD of the simulation box with
clusterization of atoms to improve the vectorization support. Clusterization is done in a way that it ensures the
vectorization of computational kernels. Vectorization (Section 2.1.1) is done explicitly using architecture-specific intrin-
sic functions and currently, 14 SIMD architectures are supported. In addition, the advanced GPU offloading is used to
boost the performance. Most of the force terms are computed on the GPU, while the CPU is busy building the pair
lists.®?

One of the most important applications of MD for Computer-Aided Drug Design (CADD) are free energy calcula-
tions. Many of them exploit HPC resources. These include temperature-induced methods such as simulated®* and paral-
lel tempering® to methods biasing potentials like metadynamics,*® umbrella sampling,®” or adaptively biased MD.*®
These methods often may benefit from the use of multiple replicas of the system to enhance sampling. This represents
an additional level of parallelism (Section 2.2). Machine learning (ML) can further boost HPC-based free-energy calcu-
lations either by refining existing approaches® or by introducing new ones.”***

A hybrid QM/MM interface. The Multiscale Modeling in Chemistry (or MiMiC)*"** interface joins GROMACS with
the CPMD code.” The latter implements DFT-based MD with high levels of parallel performance using plane-wave
(PW) basis sets. Several DFT terms are calculated in reciprocal space, where the algebraic expressions of some of the
functionals are relatively simple and allow one to achieve high scalability of computations for HPC applications. The
transition between real and reciprocal space is done via Fast Fourier Transforms (FFTs).”® The electronic density is
mapped onto a regular grid both in real and reciprocal space and this grid is distributed using slab DD. Although, the
latter introduces quite a tight scaling limit (equal to the number of grid planes along the DD dimension, further scaling
is achieved by distributing Kohn-Sham orbitals across task groups. Each group computes partial density (and potential)
on the same grid and then it is summed across all the groups. Computations are distributed using a hybrid scheme com-
bining the MPI parallelization (Section 2.2) with the threading approach (Section 2.1.2). The scaling limit is highly
dependent on the system size as well as the type of exchange-correlation functional used. Typically, the main bottleneck
preventing further scaling is the global communication in parallel 3D FFT. For small system sizes (10-100 QM atoms)
the scaling limit is around 1000-10,000 cores, whereas, for larger systems, it can be in the area of millions.®” Recently,
CPMD was also coupled with ML in order to produce QM-quality MD trajectories at a significantly lower computa-
tional cost.”® The use of Kernel Ridge Regression (KRR) allows one to achieve an extremely high sampling rate in com-
parison to pure DFT.

The parallelization of computations in MiMiC is inspired by the distributed computation scheme implemented in
CPMD. It uses slab DD of the grid across MPI tasks (Section 2.2) with a subsequent splitting on slabs across threads
(Section 2.1.2) assigned to each task. On top of that, task grouping is used (as in CPMD, see above) to dividle MM atoms
into subsets to further increase the scaling. With the use of this technique, we were able to use over 10,000 cores in a
single simulation.”® As a result, MiMiC may reach sub-ns time scale with current HPC architectures.”® This may pave
the way to highly efficient HPC-based hybrid simulations of pharmaceutically relevant enzymatic reactions, such as
those performed on SARS-COV-2 proteins.*’

3.2 | Structure-based virtual screening
3.21 | Introduction: Docking in SBVS

Molecular docking algorithms'® predict binding-conformations of two interacting molecules. They use a searching
algorithm that explores possible positions, orientations, and conformations of the potential drugs and target proteins.
Then, they rank the ligand poses using either a physics-based, or an empirical, or a knowledge-based or a machine
learning-based scoring function.’®'°* The latter is related to ligand/target binding strength.'®® Several dozens of differ-
ent docking tools and programs for both academic and commercial use are currently available'®*'%° (Table 2).

SBVS is based on state-of-the-art, flexible molecular docking algorithms.'® Flexible docking algorithms consider
both ligand and protein as flexible counterparts. They can predict more reliably binding-conformations of two inter-
acting molecules than standard rigid docking approaches, at a higher computational cost.'®*''” In these approaches,
the conformational degrees of freedom of the ligand are always included. To include receptor flexibility, which plays an
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TABLE 2 Some of the many successful applications of docking codes
Code 1 applications Platform
FlexX « Plasmepsin II and IV inhibitors'®® Linux Unit SunSolaris
« Malaria Anthrax edema factor'®’ HP-UX Windows
+ Pneumococcal peptidoglycan deacetylase inhibitors'®®
Glide « Aurora kinases inhibitors'® Linux Unit IBM AIX
« Falcipain inhibitors**
+ Cytochrome P450 inhibitors''*
Dock + FK506 immunophilin'*? Linux Unit Windows
+ BCLS6, oncogene in B-cell lymphomas''? Max OS X
Gold « Peroxisome Proliferator-Activated Receptor y Agonists.** Linux Unit Windows
SunSolaris
IBM AIX
Fred + inhibitors of C2 domain of factor V*** Linux Unit OS X Windows
Solaris AIX HP-UX
Tru64UNIX
AutoDock « inhibitors of tyrosine phosphatase’'® Linux Unit Windows

Max OS X

important role in drug discovery,''® extensive sampling of the protein degrees of freedom would be required. In princi-
ple, predicting binding poses accurately would require extensive sampling of the protein degrees of freedom. However,
this is not yet feasible for SBVS campaigns'*® and one has to resort to approximations. The first ones were the “Soft
Docking”'*® and the “SideChain Flexibility”,"*! which used a single protein conformation as an input. In the first, the
Van der Waals repulsion term (described by a Lennard-Jones [LJ] potential energy function in the force-field based
scoring functions) is reduced allowing for closer ligand—protein interactions. Following this idea, for instance, the scal-
ing factor of the LJ potential is treated as a variable input parameter in codes such as Dock,'** Glide,'** and
AutoDock."** Soft Docking can simulate induced-fit, albeit, in a very approximate manner'**'** and its main drawback
is that it could implicate unreal poses.'?®> The SideChain Flexibility approach instead, introduces alternative conforma-
tions for protein side chains in the binding site,"** under the assumption that ligand binding induces only side-chain
motions,'*® in most of the cases. This is achieved usually by discrete sampling, that is, by exploiting databases of
rotamer libraries (i.e., Autodock Vina'*”'?®), or by sampling some degrees of freedom within the search engine of the
software (like in GOLD'), or by a posteriori optimizing the side chains in the presence of the rigid ligand
(i.e., Glide'*®). Discrete sampling limits side-chain motion to a small set of energetically accessible conformations reduc-
ing computational time. Obviously, backbone flexibility and huge conformational variations of the protein are neglected
by these approaches.

Multiple protein conformations docking protocols instead represent a protein by an ensemble of conformations of
similar energy. These conformations can be available from experiments or generated via computational techniques,
such as Monte Carlo or Molecular Dynamics simulations. The idea is to try to take into account all these diverse confor-
mations either by sequentially docking the ligand into each receptor structure'*® or by building up a single averaged
grid or by constructing the best performing “chimera” grid.'**'*°

3.2.2 | HPC approaches

The accuracy and the performance of SBVS in large-scale drug design campaigns may profit greatly from HPC
approaches. Indeed, the latter may increase (a) global optimization procedures, (b) the number of the generated molec-
ular conformations, and (c) the mathematical complexity of the scoring function."*® Moreover, HPC approaches can
distribute efficiently the computational cost of the scoring functions, that is, a highly time-consuming step. This has in
turn allowed to (c) improve the complexity (and the accuracy) of the scoring functions, without significantly
compromising the speed of drug screening.'*
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Therefore, in the next sections, we will describe how several research groups have developed parallel versions of
molecular docking software based on common HPC platforms: grid, multiprocessor, cluster/supercomputer, accelera-
tor/heterogeneous system machine grid, and cloud.

3.2.3 | Examples

Multiprocessor computing (Section 2.1.2) with the implementation of multiple data stream (MIMD) systems,"*! are very
suitable for docking software because of the inherent independence of the individual processes: Many time-consuming
processes in several docking softwares are indeed already composed of independent parts, like for instance ligands or
receptors preparations in AutoDock,"*? that can be run in parallel. Moreover, one can also exploit different para-
llelization paradigms for facilitating software development in a parallel environment, like distributed (e.g., MPI) and
shared-memory approaches (e.g. OpenMPI; Section 2.2). For instance, a mixed parallel scheme that combines MPI and
multithreading (Section 2.1.2) was implemented in the widely used AutoDock Vina (Vina) code."?® This exploits the
parallelism of shared memory hardware, such as multi-core CPU or multi-CPU workstations,'*> allowing to reach
hyper linearity speedup on a multi-processor machine (or to be Embarrassingly Parallel [EP])."** Vina's amazing perfor-
mance can be achieved thanks to the high independencies in each process.

The Glide,'* LigandFit,"*® and FlexX'*® codes use Grid computing"*” (Section 2.2) to distribute docking jobs to mul-
tiple computers over a network. This shortens the time to solution of large-scale molecular docking that allows for
introducing receptor flexibility®'*® and improves the accuracy of the scoring function.

Cluster computing (Section 2.2) may be particularly efficient in high throughput and HPC-based docking, as usu-
ally, the number of ligands to be screened is much larger than the number of CPUs available on a single machine.
Therefore, the ligands are divided into several packets equal to the number of CPUs. Each CPU docks different ligands
on the receptor. After completing docking, the results are collected, and then a predefined percentage of the best ligands
are selected for further analysis. However, several docking software packages like for instance, the MPI version of the
DOCK code,'*® face the problem of overloading the main node: the allocation efficiency of the main node decreases
with increasing the number of nodes. This issue may be overcome by the effective distributed virtual screening data
management system (DVSDMS) introduced by Caflisch et al.,"** where the data processing and work distribution are
realized by an open-source structured query language database software MySQL,'*® and that can be freely connected
with different molecular docking software.

Supercomputing clusters (Section 2.2) require some complexity in the programming paradigms employed. For
instance, the Dock 6 code'*" required few adjustments to run on large-scale parallel computers such as the IBM System
Blue Gene® and Blue Gene/L,"**: The performance on every single node was optimized. Next, also the parallelization
was optimized: the nodes were divided into the main processor, responsible for scheduling tasks, and the worker pro-
cessors executing their respective molecular docking tasks (master-working scheme). Due to the overload of the host,
this scheme cannot scale well with a large number of nodes.'** Thus, work units are sent asynchronously to individual
computing nodes on the large-scale parallel computers to be executed. However, sometimes the workload of each
worker processor turns out not to be equally distributed.'** To face this challenge, the VinaMPI code uses a distribution
scheme in which tasks are evenly distributed to the workers based on the complexity of each task.'*®

Parallel optimization of molecular docking also exploits accelerators like GPUs (Section 2.2). The calculation of the
non-bonded (such as electrostatics or van der Waals forces) interactions usually represents up to 80% of the total execu-
tion time. Using GPU, these calculations can speed by a factor of 100.*4¢'*® They are implemented in codes such as
FlexScreen.'*

The cloud arcitecture is more scalable, flexible, and cost-effective than several other HPC approaches."”® A cloud
platform’' is available for the widely used molecular docking program, AutoDock as AutoDockcloud.'** Also,
wFReDoW, a Cloud-Based Web environment managed to handle the important challenge of virtual screening of mil-
lions of ligands using molecular docking simulations of a fully flexible receptor model.">?

3.3 | HPC-based MD and docking: Two complementary approaches

Even with state-of-the-art scoring functions-based predictions and the strategies to introduce target flexibility, docking
approaches present further limitations, as they do not account well for conformational entropy or solvation energy
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contributions. This is detrimental for binding affinity prediction.'>*"'*° Integration of parallel docking programs with
postprocessing approaches may partially alleviate these limits.

Top-ranking docking poses may be re-scored by applying Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA methods)*’ or Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA).?” These approaches
are cheaper and more approximate than all-atom MD in explicit solvent. In MM/GBSA or MM/PBSA, one performs
MD simulations on each ligand-receptor complex and then uses the GB or the PB to calculate the electrostatic contribu-
tion and a surface area model to estimate the nonpolar contributions.'*” Entropic contributions can be roughly esti-
mated by using a harmonic model in MM/PB. In any case, both MM/GBSA and MM/PBSA contain some drastic
approximations that limit the accuracy of conformational entropies and hydration free energies. These render the value
of such post-docking rescoring, in some cases, inconclusive,'*® although these limitations can be overcome by all-atom
MD and enhanced sampling approaches (Section 3.1),'>*'* far more accurate (and expensive). In addition, by improv-
ing dramatically the estimation of binding affinities,"*> the number of false positives and false negatives can be largely
lowered in a virtual screening campaign.'® Further improvements are possible using QM-based methods.*°

An interesting experiment was performed to quantify the advantage of using HPC in a MD-based virtual screening
(MDVS).'®! The authors showed that without using HPC, MDVS for a 10 K compound library with tens of nanoseconds
of force-field-based MD simulations requires years of computer time. In contrast, a state of the art HPC machine can be
600 times faster than an eight-core PC server is in screening a typical drug target (which can contain from 10 K up to
70 K atoms without solvent) and that also careful design of the GPU/CPU architecture can decrease the HPC costs.'®!

4 | CONCLUSION

CSBDD complements in a powerful synergy experimental drug discovery research. Here, we have highlighted some of
the current advances in HPC to accelerate docking and MD algorithms. Code developers have ported the existing soft-
ware to different HPC platforms and even designed novel parallel algorithms able to fully exploit the computing power
of parallel computing, and, eventually to face the exascale challenge'®>—that is, the possibility of running 10'® FLOPS.
Exascale machines could literally revolutionize CSBDD. To reach this goal, at least three major challenges/caveats need
to be met: (a) usage of millions of cores requires a complete re-working of existing algorithms; (b) heterogeneous accel-
erated architectures require careful software design; (c) the codes should continue to work in case of hardware failure
that is increasingly more likely for large parallel computers.'®

In addition to HPC, CSBDD is currently greatly boosted by the explosion of Artificial Intelligence (AI) and in partic-
ular Machine Learning (ML) and Deep Learning (DL) methods. In this framework, in October 2018, the Defense
Advanced Research Projects Agency (DARPA) announced the launch of the accelerated molecular discovery (AMD)
program, which aims to develop new Al-based systematic approaches to accelerate the discovery and optimization of
high-quality molecules, including drug molecules. Moreover, internationally renowned pharmaceutical companies such
as Merck, Sanofi, Genentech, and Takeda, have launched relevant cooperation efforts with Al companies.164 Finally,
AlphaFold developed by the DeepMind team has shown extremely impressive results in protein structure prediction.'®®
Given these premises, we expect that the combination of AI with HPC, that is, currently just at the very beginning, will
revolutionize drug design and drug discovery in the next future.
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