000891723 001__ 891723
000891723 005__ 20240610120552.0
000891723 0247_ $$2doi$$a10.1021/acs.nanolett.0c03199
000891723 0247_ $$2ISSN$$a1530-6984
000891723 0247_ $$2ISSN$$a1530-6992
000891723 0247_ $$2Handle$$a2128/27614
000891723 0247_ $$2altmetric$$aaltmetric:99004257
000891723 0247_ $$2pmid$$a33492966
000891723 0247_ $$2WOS$$aWOS:000619638600002
000891723 037__ $$aFZJ-2021-01696
000891723 041__ $$aEnglish
000891723 082__ $$a660
000891723 1001_ $$00000-0001-7405-0332$$aKarna, Sunil K.$$b0$$eCorresponding author
000891723 245__ $$aAnnihilation and Control of Chiral Domain Walls with Magnetic Fields
000891723 260__ $$aWashington, DC$$bACS Publ.$$c2021
000891723 3367_ $$2DRIVER$$aarticle
000891723 3367_ $$2DataCite$$aOutput Types/Journal article
000891723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618407914_26707
000891723 3367_ $$2BibTeX$$aARTICLE
000891723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891723 3367_ $$00$$2EndNote$$aJournal Article
000891723 520__ $$aThe control of domain walls is central to nearly all magnetic technologies, particularly for information storage and spintronics. Creative attempts to increase storage density need to overcome volatility due to thermal fluctuations of nanoscopic domains and heating limitations. Topological defects, such as solitons, skyrmions, and merons, may be much less susceptible to fluctuations, owing to topological constraints, while also being controllable with low current densities. Here, we present the first evidence for soliton/soliton and soliton/antisoliton domain walls in the hexagonal chiral magnet Mn1/3NbS2 that respond asymmetrically to magnetic fields and exhibit pair-annihilation. This is important because it suggests the possibility of controlling the occurrence of soliton pairs and the use of small fields or small currents to control nanoscopic magnetic domains. Specifically, our data suggest that either soliton/soliton or soliton/antisoliton pairs can be stabilized by tuning the balance between intrinsic exchange interactions and long-range magnetostatics in restricted geometries.
000891723 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000891723 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
000891723 588__ $$aDataset connected to CrossRef
000891723 7001_ $$0P:(DE-HGF)0$$aMarshall, Madalynn$$b1
000891723 7001_ $$0P:(DE-HGF)0$$aXie, Weiwei$$b2
000891723 7001_ $$0P:(DE-HGF)0$$aDeBeer-Schmitt, Lisa$$b3
000891723 7001_ $$0P:(DE-HGF)0$$aYoung, David P.$$b4
000891723 7001_ $$0P:(DE-HGF)0$$aVekhter, Ilya$$b5
000891723 7001_ $$00000-0003-4280-5109$$aShelton, William A.$$b6
000891723 7001_ $$0P:(DE-Juel1)144926$$aKovács, Andras$$b7$$ufzj
000891723 7001_ $$0P:(DE-HGF)0$$aCharilaou, Michalis$$b8
000891723 7001_ $$0P:(DE-HGF)0$$aDiTusa, John F.$$b9
000891723 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.0c03199$$gVol. 21, no. 3, p. 1205 - 1212$$n3$$p1205 - 1212$$tNano letters$$v21$$x1530-6992$$y2021
000891723 8564_ $$uhttps://juser.fz-juelich.de/record/891723/files/acs.nanolett.0c03199.pdf$$yOpenAccess
000891723 909CO $$ooai:juser.fz-juelich.de:891723$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery$$pec_fundedresources
000891723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b7$$kFZJ
000891723 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891723 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891723 9141_ $$y2021
000891723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891723 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891723 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2019$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2019$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891723 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891723 920__ $$lyes
000891723 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891723 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000891723 9801_ $$aFullTexts
000891723 980__ $$ajournal
000891723 980__ $$aVDB
000891723 980__ $$aUNRESTRICTED
000891723 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891723 980__ $$aI:(DE-Juel1)PGI-5-20110106
000891723 981__ $$aI:(DE-Juel1)ER-C-1-20170209