001     891723
005     20240610120552.0
024 7 _ |a 10.1021/acs.nanolett.0c03199
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/27614
|2 Handle
024 7 _ |a altmetric:99004257
|2 altmetric
024 7 _ |a 33492966
|2 pmid
024 7 _ |a WOS:000619638600002
|2 WOS
037 _ _ |a FZJ-2021-01696
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Karna, Sunil K.
|0 0000-0001-7405-0332
|b 0
|e Corresponding author
245 _ _ |a Annihilation and Control of Chiral Domain Walls with Magnetic Fields
260 _ _ |a Washington, DC
|c 2021
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618407914_26707
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The control of domain walls is central to nearly all magnetic technologies, particularly for information storage and spintronics. Creative attempts to increase storage density need to overcome volatility due to thermal fluctuations of nanoscopic domains and heating limitations. Topological defects, such as solitons, skyrmions, and merons, may be much less susceptible to fluctuations, owing to topological constraints, while also being controllable with low current densities. Here, we present the first evidence for soliton/soliton and soliton/antisoliton domain walls in the hexagonal chiral magnet Mn1/3NbS2 that respond asymmetrically to magnetic fields and exhibit pair-annihilation. This is important because it suggests the possibility of controlling the occurrence of soliton pairs and the use of small fields or small currents to control nanoscopic magnetic domains. Specifically, our data suggest that either soliton/soliton or soliton/antisoliton pairs can be stabilized by tuning the balance between intrinsic exchange interactions and long-range magnetostatics in restricted geometries.
536 _ _ |a 535 - Materials Information Discovery (POF4-535)
|0 G:(DE-HGF)POF4-535
|c POF4-535
|x 0
|f POF IV
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|x 1
|f ERC-2019-SyG
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marshall, Madalynn
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xie, Weiwei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a DeBeer-Schmitt, Lisa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Young, David P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vekhter, Ilya
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shelton, William A.
|0 0000-0003-4280-5109
|b 6
700 1 _ |a Kovács, Andras
|0 P:(DE-Juel1)144926
|b 7
|u fzj
700 1 _ |a Charilaou, Michalis
|0 P:(DE-HGF)0
|b 8
700 1 _ |a DiTusa, John F.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1021/acs.nanolett.0c03199
|g Vol. 21, no. 3, p. 1205 - 1212
|0 PERI:(DE-600)2048866-X
|n 3
|p 1205 - 1212
|t Nano letters
|v 21
|y 2021
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/891723/files/acs.nanolett.0c03199.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891723
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144926
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21