000891724 001__ 891724
000891724 005__ 20230111074315.0
000891724 0247_ $$2doi$$a10.3390/mi11121128
000891724 0247_ $$2Handle$$a2128/27615
000891724 0247_ $$2altmetric$$aaltmetric:96383214
000891724 0247_ $$2pmid$$a33419277
000891724 0247_ $$2WOS$$aWOS:000602446200001
000891724 037__ $$aFZJ-2021-01697
000891724 041__ $$aEnglish
000891724 082__ $$a620
000891724 1001_ $$00000-0002-1778-2155$$aBarthel, Armin$$b0$$eCorresponding author
000891724 245__ $$aTi Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering 
000891724 260__ $$aBasel$$bMDPI$$c2020
000891724 3367_ $$2DRIVER$$aarticle
000891724 3367_ $$2DataCite$$aOutput Types/Journal article
000891724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642430301_29275
000891724 3367_ $$2BibTeX$$aARTICLE
000891724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891724 3367_ $$00$$2EndNote$$aJournal Article
000891724 520__ $$aThe suitability of Ti as a band gap modifier for α-Ga2O3 was investigated, taking advantage of the isostructural α phases and high band gap difference between Ti2O3 and Ga2O3. Films of (Ti,Ga)2O3 were synthesized by atomic layer deposition on sapphire substrates, and characterized to determine how crystallinity and band gap vary with composition for this alloy. We report the deposition of high quality α-(TixGa1−x)2O3 films with x = 3.7%. For greater compositions the crystalline quality of the films degrades rapidly, where the corundum phase is maintained in films up to x = 5.3%, and films containing greater Ti fractions being amorphous. Over the range of achieved corundum phase films, that is 0% ≤ x ≤ 5.3%, the band gap energy varies by ∼270 meV. The ability to maintain a crystalline phase at low fractions of Ti, accompanied by a modification in band gap, shows promising prospects for band gap engineering and the development of wavelength specific solar-blind photodetectors based on α-Ga2O3.
000891724 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000891724 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000891724 588__ $$aDataset connected to CrossRef
000891724 7001_ $$0P:(DE-HGF)0$$aRoberts, Joseph$$b1
000891724 7001_ $$00000-0003-2690-8343$$aNapari, Mari$$b2
000891724 7001_ $$0P:(DE-HGF)0$$aFrentrup, Martin$$b3
000891724 7001_ $$0P:(DE-HGF)0$$aHuq, Tahmida$$b4
000891724 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b5$$ufzj
000891724 7001_ $$0P:(DE-HGF)0$$aOliver, Rachel$$b6
000891724 7001_ $$0P:(DE-HGF)0$$aChalker, Paul$$b7
000891724 7001_ $$00000-0003-2235-7441$$aSajavaara, Timo$$b8
000891724 7001_ $$00000-0003-1008-1652$$aMassabuau, Fabien$$b9
000891724 773__ $$0PERI:(DE-600)2620864-7$$a10.3390/mi11121128$$gVol. 11, no. 12, p. 1128 -$$n12$$p1128 -$$tMicromachines$$v11$$x2072-666X$$y2020
000891724 8564_ $$uhttps://juser.fz-juelich.de/record/891724/files/micromachines-11-01128.pdf$$yOpenAccess
000891724 909CO $$ooai:juser.fz-juelich.de:891724$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000891724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b5$$kFZJ
000891724 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891724 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891724 9141_ $$y2021
000891724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-11
000891724 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROMACHINES-BASEL : 2018$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891724 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-11
000891724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000891724 920__ $$lyes
000891724 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891724 980__ $$ajournal
000891724 980__ $$aVDB
000891724 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891724 980__ $$aUNRESTRICTED
000891724 9801_ $$aFullTexts