001     891724
005     20230111074315.0
024 7 _ |a 10.3390/mi11121128
|2 doi
024 7 _ |a 2128/27615
|2 Handle
024 7 _ |a altmetric:96383214
|2 altmetric
024 7 _ |a 33419277
|2 pmid
024 7 _ |a WOS:000602446200001
|2 WOS
037 _ _ |a FZJ-2021-01697
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Barthel, Armin
|0 0000-0002-1778-2155
|b 0
|e Corresponding author
245 _ _ |a Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642430301_29275
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The suitability of Ti as a band gap modifier for α-Ga2O3 was investigated, taking advantage of the isostructural α phases and high band gap difference between Ti2O3 and Ga2O3. Films of (Ti,Ga)2O3 were synthesized by atomic layer deposition on sapphire substrates, and characterized to determine how crystallinity and band gap vary with composition for this alloy. We report the deposition of high quality α-(TixGa1−x)2O3 films with x = 3.7%. For greater compositions the crystalline quality of the films degrades rapidly, where the corundum phase is maintained in films up to x = 5.3%, and films containing greater Ti fractions being amorphous. Over the range of achieved corundum phase films, that is 0% ≤ x ≤ 5.3%, the band gap energy varies by ∼270 meV. The ability to maintain a crystalline phase at low fractions of Ti, accompanied by a modification in band gap, shows promising prospects for band gap engineering and the development of wavelength specific solar-blind photodetectors based on α-Ga2O3.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Roberts, Joseph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Napari, Mari
|0 0000-0003-2690-8343
|b 2
700 1 _ |a Frentrup, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huq, Tahmida
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 5
|u fzj
700 1 _ |a Oliver, Rachel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chalker, Paul
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sajavaara, Timo
|0 0000-0003-2235-7441
|b 8
700 1 _ |a Massabuau, Fabien
|0 0000-0003-1008-1652
|b 9
773 _ _ |a 10.3390/mi11121128
|g Vol. 11, no. 12, p. 1128 -
|0 PERI:(DE-600)2620864-7
|n 12
|p 1128 -
|t Micromachines
|v 11
|y 2020
|x 2072-666X
856 4 _ |u https://juser.fz-juelich.de/record/891724/files/micromachines-11-01128.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891724
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144926
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROMACHINES-BASEL : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21