000891726 001__ 891726
000891726 005__ 20230111074315.0
000891726 0247_ $$2doi$$a10.1016/j.jallcom.2019.153103
000891726 0247_ $$2ISSN$$a0925-8388
000891726 0247_ $$2ISSN$$a1873-4669
000891726 0247_ $$2Handle$$a2128/27623
000891726 0247_ $$2WOS$$aWOS:000507854700026
000891726 037__ $$aFZJ-2021-01699
000891726 082__ $$a540
000891726 1001_ $$00000-0003-1159-1726$$aPopov, A. G.$$b0
000891726 245__ $$aDevelopment of high-coercivity state in high-energy and high-temperature Sm-Co-Fe-Cu-Zr magnets upon step cooling
000891726 260__ $$aLausanne$$bElsevier$$c2020
000891726 3367_ $$2DRIVER$$aarticle
000891726 3367_ $$2DataCite$$aOutput Types/Journal article
000891726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618484140_25319
000891726 3367_ $$2BibTeX$$aARTICLE
000891726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891726 3367_ $$00$$2EndNote$$aJournal Article
000891726 520__ $$aThe work compares the peculiarities of the high-coercivity state formation in the Sm-Co-Fe-Cu-Zr high-temperature and high-energy permanent magnets (HTPM and HEPM) in the course of the heat treatment with the stepwise decreasing temperature from 830 to 400 °C. Two types of magnets with varying Fe concentration, i.e., Sm(Co0.88-xFexCu0.09Zr0.03)7 with x = 0–0.12 (the HTPMs) and Sm(Co0.91-xFexCu0.06 Zr0.03)7.5 with x = 0.24–0.33 (the HEPMs) were studied at different temperatures of heat treatment for phase formation by x-ray diffraction followed by magnetic property measurements. Microstructure characterization was performed using transmission electron microscopy, whereas the three-dimensional elemental distribution at near-atomic scale was obtained using atom probe tomography. In HEPMs, the main increase in coercivity and relaxation of stresses accompanied by intensive enrichment of the 1:5 phase in Cu are observed at high temperatures (Т ≈ 700 °C). In HTPMs, the coercivity monotonously increases in the entire temperature range of the slow cooling from 700 to 400 °C at a rate of 0.5 °C/s. At the temperature close to the Curie temperature (∼550 °C) of the Sm(Co,Cu)5-type phase, the anomaly of the coercivity increment has been observed. The interphase stresses grow and the elemental redistribution appears to be accelerated simultaneously. The non-uniform Cu distribution in the 1:5 phase can be described by the formation of Cu-rich interlayers at the interface of the Sm(Co,Cu)5 and Sm2(Co,Fe)17-type phases.
000891726 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000891726 588__ $$aDataset connected to CrossRef
000891726 7001_ $$00000-0003-1794-6727$$aGolovnia, O. A.$$b1$$eCorresponding author
000891726 7001_ $$0P:(DE-HGF)0$$aGaviko, V. S.$$b2
000891726 7001_ $$0P:(DE-HGF)0$$aVasilenko, D. Yu$$b3
000891726 7001_ $$0P:(DE-HGF)0$$aBratushev, D. Yu$$b4
000891726 7001_ $$0P:(DE-HGF)0$$aBalaji, V. I. Nithin$$b5
000891726 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b6
000891726 7001_ $$00000-0001-9954-5307$$aPradeep, K. G.$$b7
000891726 7001_ $$00000-0003-2871-8682$$aGopalan, R.$$b8
000891726 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2019.153103$$gVol. 820, p. 153103 -$$p153103 -$$tJournal of alloys and compounds$$v820$$x0925-8388$$y2020
000891726 8564_ $$uhttps://juser.fz-juelich.de/record/891726/files/16_Popov_JAC.pdf$$yPublished on 2019-11-20. Available in OpenAccess from 2021-11-20.
000891726 909CO $$ooai:juser.fz-juelich.de:891726$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b6$$kFZJ
000891726 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891726 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891726 9141_ $$y2021
000891726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000891726 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891726 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891726 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2019$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891726 920__ $$lyes
000891726 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891726 980__ $$ajournal
000891726 980__ $$aVDB
000891726 980__ $$aUNRESTRICTED
000891726 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891726 9801_ $$aFullTexts