Home > Publications database > Development of high-coercivity state in high-energy and high-temperature Sm-Co-Fe-Cu-Zr magnets upon step cooling > print |
001 | 891726 | ||
005 | 20230111074315.0 | ||
024 | 7 | _ | |a 10.1016/j.jallcom.2019.153103 |2 doi |
024 | 7 | _ | |a 0925-8388 |2 ISSN |
024 | 7 | _ | |a 1873-4669 |2 ISSN |
024 | 7 | _ | |a 2128/27623 |2 Handle |
024 | 7 | _ | |a WOS:000507854700026 |2 WOS |
037 | _ | _ | |a FZJ-2021-01699 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Popov, A. G. |0 0000-0003-1159-1726 |b 0 |
245 | _ | _ | |a Development of high-coercivity state in high-energy and high-temperature Sm-Co-Fe-Cu-Zr magnets upon step cooling |
260 | _ | _ | |a Lausanne |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1618484140_25319 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The work compares the peculiarities of the high-coercivity state formation in the Sm-Co-Fe-Cu-Zr high-temperature and high-energy permanent magnets (HTPM and HEPM) in the course of the heat treatment with the stepwise decreasing temperature from 830 to 400 °C. Two types of magnets with varying Fe concentration, i.e., Sm(Co0.88-xFexCu0.09Zr0.03)7 with x = 0–0.12 (the HTPMs) and Sm(Co0.91-xFexCu0.06 Zr0.03)7.5 with x = 0.24–0.33 (the HEPMs) were studied at different temperatures of heat treatment for phase formation by x-ray diffraction followed by magnetic property measurements. Microstructure characterization was performed using transmission electron microscopy, whereas the three-dimensional elemental distribution at near-atomic scale was obtained using atom probe tomography. In HEPMs, the main increase in coercivity and relaxation of stresses accompanied by intensive enrichment of the 1:5 phase in Cu are observed at high temperatures (Т ≈ 700 °C). In HTPMs, the coercivity monotonously increases in the entire temperature range of the slow cooling from 700 to 400 °C at a rate of 0.5 °C/s. At the temperature close to the Curie temperature (∼550 °C) of the Sm(Co,Cu)5-type phase, the anomaly of the coercivity increment has been observed. The interphase stresses grow and the elemental redistribution appears to be accelerated simultaneously. The non-uniform Cu distribution in the 1:5 phase can be described by the formation of Cu-rich interlayers at the interface of the Sm(Co,Cu)5 and Sm2(Co,Fe)17-type phases. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Golovnia, O. A. |0 0000-0003-1794-6727 |b 1 |e Corresponding author |
700 | 1 | _ | |a Gaviko, V. S. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Vasilenko, D. Yu |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Bratushev, D. Yu |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Balaji, V. I. Nithin |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kovacs, Andras |0 P:(DE-Juel1)144926 |b 6 |
700 | 1 | _ | |a Pradeep, K. G. |0 0000-0001-9954-5307 |b 7 |
700 | 1 | _ | |a Gopalan, R. |0 0000-0003-2871-8682 |b 8 |
773 | _ | _ | |a 10.1016/j.jallcom.2019.153103 |g Vol. 820, p. 153103 - |0 PERI:(DE-600)2012675-X |p 153103 - |t Journal of alloys and compounds |v 820 |y 2020 |x 0925-8388 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891726/files/16_Popov_JAC.pdf |y Published on 2019-11-20. Available in OpenAccess from 2021-11-20. |
909 | C | O | |o oai:juser.fz-juelich.de:891726 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144926 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J ALLOY COMPD : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|