000891745 001__ 891745
000891745 005__ 20240711085627.0
000891745 0247_ $$2doi$$a10.3390/coatings11040449
000891745 0247_ $$2Handle$$a2128/27609
000891745 0247_ $$2WOS$$aWOS:000642932000001
000891745 037__ $$aFZJ-2021-01705
000891745 082__ $$a660
000891745 1001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b0$$eCorresponding author
000891745 245__ $$aInfluence of Substrate Removal Method on the Properties of Free-Standing YSZ Coatings
000891745 260__ $$aBasel$$bMDPI$$c2021
000891745 3367_ $$2DRIVER$$aarticle
000891745 3367_ $$2DataCite$$aOutput Types/Journal article
000891745 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618398111_2631
000891745 3367_ $$2BibTeX$$aARTICLE
000891745 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891745 3367_ $$00$$2EndNote$$aJournal Article
000891745 520__ $$aThermally sprayed ceramic coatings are often tested as free-standing layers to investigate different properties such as thermal expansion coefficient, thermal conductivity, sintering, mechanical behavior, corrosion resistance, gas tightness, or electrical properties. In this paper, four different substrate removal methods were used to obtain free-standing YSZ coatings. At first, spraying on a steel substrate and subsequent dissolution of the substrate-coating interface by hydrochloric acid (HCl) was used. Second, the steel substrate was removed by applying an electrical field via electrochemical corrosion of the surface of the substrate. In a third method, the coating was sprayed on a salt (NaCI) interlayer, which was removed later by dissolution in water. At last, the coating was sprayed on a graphite substrate and the substrate was removed by heat treatment. After the preparation of free-standing coatings, these were characterized using scanning electron microscopy, mercury porosimetry, indentation tests, and room temperature three-point bending tests, which allowed the determination of Young’s modulus and viscosity. The results revealed measurable differences in coating properties as a result of the substrate removal methods, i.e., HCl method led to higher porosity and lower modulus in the YSZ coating.
000891745 536__ $$0G:(DE-HGF)POF4-124$$a124 - Hochtemperaturtechnologien (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000891745 588__ $$aDataset connected to CrossRef
000891745 7001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b1
000891745 7001_ $$0P:(DE-Juel1)129661$$aSchwartz-Lückge, Sigrid$$b2$$ufzj
000891745 773__ $$0PERI:(DE-600)2662314-6$$a10.3390/coatings11040449$$gVol. 11, no. 4, p. 449 -$$n4$$p449 -$$tCoatings$$v11$$x2079-6412$$y2021
000891745 8564_ $$uhttps://juser.fz-juelich.de/record/891745/files/Invoice_MDPI_coatings-1174614.pdf
000891745 8564_ $$uhttps://juser.fz-juelich.de/record/891745/files/coatings-11-00449.pdf$$yOpenAccess
000891745 8767_ $$81174614$$92021-04-11$$d2021-04-14$$eAPC$$jZahlung erfolgt$$pcoatings-1174614$$zBelegnr. 1200165645 / 2021
000891745 909CO $$ooai:juser.fz-juelich.de:891745$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b0$$kFZJ
000891745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b1$$kFZJ
000891745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129661$$aForschungszentrum Jülich$$b2$$kFZJ
000891745 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891745 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000891745 9141_ $$y2021
000891745 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32
000891745 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891745 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOATINGS : 2018$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891745 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000891745 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000891745 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891745 9801_ $$aAPC
000891745 9801_ $$aFullTexts
000891745 980__ $$ajournal
000891745 980__ $$aVDB
000891745 980__ $$aUNRESTRICTED
000891745 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891745 980__ $$aAPC
000891745 981__ $$aI:(DE-Juel1)IMD-2-20101013