000891753 001__ 891753
000891753 005__ 20240711092243.0
000891753 0247_ $$2doi$$a10.1557/s43578-021-00173-x
000891753 0247_ $$2ISSN$$a0884-1616
000891753 0247_ $$2ISSN$$a0884-2914
000891753 0247_ $$2ISSN$$a2044-5326
000891753 0247_ $$2Handle$$a2128/28307
000891753 0247_ $$2WOS$$aWOS:000636935300001
000891753 037__ $$aFZJ-2021-01713
000891753 082__ $$a670
000891753 1001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b0$$eCorresponding author
000891753 245__ $$aTowards enhanced nanoindentation by image recognition
000891753 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2021
000891753 3367_ $$2DRIVER$$aarticle
000891753 3367_ $$2DataCite$$aOutput Types/Journal article
000891753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712819462_17869
000891753 3367_ $$2BibTeX$$aARTICLE
000891753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891753 3367_ $$00$$2EndNote$$aJournal Article
000891753 520__ $$aThe Oliver–Pharr method is maybe the most established method to determine a material’s Young’s modulus and hardness. However, this method has a number of requirements that render it more challenging for hard and stiff materials. Contact area and frame stiffness have to be calibrated for every tip, and the surface contact has to be accurately identified. The frame stiffness calibration is particularly prone to inaccuracies since it is easily affected, e.g., by sample mounting. In this study, we introduce a method to identify Young’s modulus and hardness from nanoindentation without separate area function and frame stiffness calibrations and without surface contact identification. To this end, we employ automatic image recognition to determine the contact area that might be less than a square micrometer. We introduce the method and compare the results to those of the Oliver–Pharr method. Our approach will be demonstrated and evaluated for nanoindentation of Si, a hard and stiff material, which is challenging for the proposed method.
000891753 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891753 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x1
000891753 588__ $$aDataset connected to CrossRef
000891753 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b1$$ufzj
000891753 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-021-00173-x$$p2266-2276$$tJournal of materials research$$v36$$x2044-5326$$y2021
000891753 8564_ $$uhttps://juser.fz-juelich.de/record/891753/files/Brinckmann-Schwaiger2021_Article_TowardsEnhancedNanoindentation.pdf$$yOpenAccess
000891753 8767_ $$d2021-04-16$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000891753 909CO $$ooai:juser.fz-juelich.de:891753$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000891753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b0$$kFZJ
000891753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b1$$kFZJ
000891753 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891753 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x1
000891753 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891753 9141_ $$y2021
000891753 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000891753 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000891753 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000891753 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000891753 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000891753 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891753 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891753 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2019$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000891753 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891753 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000891753 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891753 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000891753 9801_ $$aAPC
000891753 9801_ $$aFullTexts
000891753 980__ $$ajournal
000891753 980__ $$aVDB
000891753 980__ $$aI:(DE-Juel1)IEK-2-20101013
000891753 980__ $$aAPC
000891753 980__ $$aUNRESTRICTED
000891753 981__ $$aI:(DE-Juel1)IMD-1-20101013