000891760 001__ 891760
000891760 005__ 20240708133248.0
000891760 0247_ $$2doi$$a10.1063/5.0012028
000891760 0247_ $$2ISSN$$a0034-6748
000891760 0247_ $$2ISSN$$a1089-7623
000891760 0247_ $$2ISSN$$a1527-2400
000891760 0247_ $$2Handle$$a2128/27602
000891760 0247_ $$2altmetric$$aaltmetric:95381081
000891760 0247_ $$2pmid$$a33379941
000891760 0247_ $$2WOS$$aWOS:000597333200001
000891760 037__ $$aFZJ-2021-01720
000891760 082__ $$a620
000891760 1001_ $$00000-0001-5194-1933$$aStadlmayr, Reinhard$$b0
000891760 245__ $$aA high temperature dual-mode quartz crystal microbalance technique for erosion and thermal desorption spectroscopy measurements
000891760 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2020
000891760 3367_ $$2DRIVER$$aarticle
000891760 3367_ $$2DataCite$$aOutput Types/Journal article
000891760 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618314431_31083
000891760 3367_ $$2BibTeX$$aARTICLE
000891760 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891760 3367_ $$00$$2EndNote$$aJournal Article
000891760 520__ $$aAn improved quartz crystal microbalance measurement method is described, which allows us to determine erosion, implantation, and release rates of thin films, during changing temperatures and up to 700 K. A quasi-simultaneous excitation of two eigenmodes of the quartz resonator is able to compensate for frequency drifts due to temperature changes. The necessary electronics, the controlling behavior, and the dual-mode temperature compensation are described. With this improved technique, quantitative in situ temperature-programmed desorption measurements are possible and the quartz crystal microbalance can be used for quantification of thermal desorption spectroscopy measurements with a quadrupole mass spectrometer. This is demonstrated by a study of the retention and release behavior of hydrogen isotopes in fusion-relevant materials. We find that more than 90% of the deuterium implanted into a thin film of beryllium is released during a subsequent temperature ramp up to 500 K
000891760 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000891760 588__ $$aDataset connected to CrossRef
000891760 7001_ $$00000-0002-7478-7999$$aSzabo, Paul Stefan$$b1
000891760 7001_ $$00000-0002-9854-2056$$aBiber, Herbert$$b2
000891760 7001_ $$0P:(DE-Juel1)130066$$aKoslowski, Hans Rudolf$$b3$$eCorresponding author
000891760 7001_ $$00000-0002-5392-1415$$aKadletz, Elisabeth$$b4
000891760 7001_ $$00000-0003-4502-5749$$aCupak, Christian$$b5
000891760 7001_ $$00000-0001-9451-5440$$aWilhelm, Richard Arthur$$b6
000891760 7001_ $$00000-0003-3373-9357$$aSchmid, Michael$$b7
000891760 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b8
000891760 7001_ $$00000-0002-9788-0934$$aAumayr, Friedrich$$b9
000891760 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/5.0012028$$gVol. 91, no. 12, p. 125104 -$$n12$$p125104 -$$tReview of scientific instruments$$v91$$x1089-7623$$y2020
000891760 8564_ $$uhttps://juser.fz-juelich.de/record/891760/files/5.0012028.pdf$$yPublished on 2020-12-03. Available in OpenAccess from 2021-12-03.
000891760 8564_ $$uhttps://juser.fz-juelich.de/record/891760/files/Postprint_Koslowski_A%20high%20temperature.pdf$$yPublished on 2020-12-03. Available in OpenAccess from 2021-12-03.
000891760 909CO $$ooai:juser.fz-juelich.de:891760$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130066$$aForschungszentrum Jülich$$b3$$kFZJ
000891760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b8$$kFZJ
000891760 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891760 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891760 9141_ $$y2021
000891760 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891760 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2019$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-02$$wger
000891760 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000891760 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000891760 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891760 920__ $$lyes
000891760 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891760 9801_ $$aFullTexts
000891760 980__ $$ajournal
000891760 980__ $$aVDB
000891760 980__ $$aUNRESTRICTED
000891760 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891760 981__ $$aI:(DE-Juel1)IFN-1-20101013