000891761 001__ 891761
000891761 005__ 20240711114050.0
000891761 0247_ $$2doi$$a10.1007/s11090-021-10159-6
000891761 0247_ $$2ISSN$$a0272-4324
000891761 0247_ $$2ISSN$$a1572-8986
000891761 0247_ $$2WOS$$aWOS:000629560500001
000891761 0247_ $$2Handle$$a2128/31353
000891761 037__ $$aFZJ-2021-01721
000891761 082__ $$a540
000891761 1001_ $$0P:(DE-Juel1)5017$$aReiser, D.$$b0$$eCorresponding author$$ufzj
000891761 245__ $$aDetermining Chemical Reaction Systems in Plasma-Assisted Conversion of Methane Using Genetic Algorithms
000891761 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2021
000891761 3367_ $$2DRIVER$$aarticle
000891761 3367_ $$2DataCite$$aOutput Types/Journal article
000891761 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655987118_28032
000891761 3367_ $$2BibTeX$$aARTICLE
000891761 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891761 3367_ $$00$$2EndNote$$aJournal Article
000891761 520__ $$aEven for processes with only a few gas species involved the detailed description of plasma-assisted conversion processes in gas mixtures requires a large amount of processes to be taken into account and a large number of neutral and charged particles must be considered. In addition, setting up the corresponding reaction kinetics model needs the knowledge of the rate coefficients and their temperature dependence for all possible reactions between those species. Reduced reaction networks offer a simplified and pragmatic way to obtain an overall reaction kinetics model, already useful for the analysis of experimental data even if not all details of chemistry can be covered. In this paper we present a derivation of a data driven reduced model for plasma-assisted conversion of methane in an helium environment. By consideration of a small number of elementary reactions, a simple model is set up. Experimental data are analyzed by a genetic algorithm that provides best-fit approximations for the open parameters of the model. In a further step non-relevant parameters of the model are identified and a further model reduction is achieved. The data driven analysis of methane conversion serves as an illustrative example of the proposed method. The parameters and reaction channels found are compared with known results from the literature. The method is described in detail. The main goal of this work is to present the potential of this data driven method for a simplified and pragmatic modeling in the increasingly important field of plasma-assisted catalytic processes.
000891761 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000891761 588__ $$aDataset connected to CrossRef
000891761 7001_ $$0P:(DE-HGF)0$$avon Keudell, A.$$b1
000891761 7001_ $$0P:(DE-HGF)0$$aUrbanietz, T.$$b2
000891761 773__ $$0PERI:(DE-600)2018594-7$$a10.1007/s11090-021-10159-6$$p793–813$$tPlasma chemistry and plasma processing$$v41$$x1572-8986$$y2021
000891761 8564_ $$uhttps://juser.fz-juelich.de/record/891761/files/Postprint_Reister_Determining%20Chemical%20Reaction.pdf$$yOpenAccess
000891761 8564_ $$uhttps://juser.fz-juelich.de/record/891761/files/Reiser2021_Article_DeterminingChemicalReactionSys.pdf$$yOpenAccess
000891761 8767_ $$d2021-04-26$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pPCPP-21-BL-0017.R1$$zFZJ-2021-01290
000891761 909CO $$ooai:juser.fz-juelich.de:891761$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000891761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5017$$aForschungszentrum Jülich$$b0$$kFZJ
000891761 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000891761 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000891761 9141_ $$y2021
000891761 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-04
000891761 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891761 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA CHEM PLASMA P : 2019$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-04$$wger
000891761 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891761 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000891761 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000891761 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000891761 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000891761 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000891761 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000891761 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000891761 920__ $$lyes
000891761 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000891761 9801_ $$aAPC
000891761 9801_ $$aFullTexts
000891761 980__ $$ajournal
000891761 980__ $$aVDB
000891761 980__ $$aUNRESTRICTED
000891761 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891761 980__ $$aAPC
000891761 981__ $$aI:(DE-Juel1)IFN-1-20101013